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A B S T R A C T   

The importance of proportional reasoning has long been recognized by psychologists and educators, yet we still 
do not have a good understanding of how humans mentally represent proportions. In this paper we present a 
psychophysical model of proportion estimation, extending previous approaches. We assumed that proportion 
representations are formed by representing each magnitude of a proportion stimuli (the part and its complement) 
as Gaussian activations in the mind, which are then mentally combined in the form of a proportion. We next 
derived the internal representation of proportions, including bias and internal noise parameters -capturing 
respectively how our estimations depart from true values and how variable estimations are. Methodologically, 
we introduced a mixture of components to account for contaminating behaviors (guessing and reversal of re-
sponses) and framed the model in a hierarchical way. We found empirical support for the model by testing a 
group of 4th grade children in a spatial proportion estimation task. In particular, the internal density reproduced 
the asymmetries (skewedness) seen in this and in previous reports of estimation tasks, and the model accurately 
described wide variations between subjects in behavior. Bias estimates were in general smaller than by using 
previous approaches, due to the model’s capacity to absorb contaminating behaviors. This property of the model 
can be of especial relevance for studies aimed at linking psychophysical measures with broader cognitive abil-
ities. We also recovered higher levels of noise than those reported in discrimination of spatial magnitudes and 
discuss possible explanations for it. We conclude by illustrating a concrete application of our model to study the 
effects of scaling in proportional reasoning, highlighting the value of quantitative models in this field of research.   

1. Introduction 

Throughout history, inquiry in science has been aided when formal 
models are developed for observed phenomena. In cognitive science, 
these models often attempt to make sense of behavior while estimating 
the underlying parameters that guide and inspire it. In this context, 
psychophysical models have played a key role in our understanding of 
how we perceive and mentally combine magnitudes from the world, 
providing estimates to explain the biases and variability inherent in 
much of our perception. Yet most psychophysical models have 
accounted for only a portion of magnitude-related phenomena, namely, 
absolute magnitudes, as when we estimate the size of an object or the 
duration of an event. 

While absolute magnitudes are important, magnitudes can also be 

combined to form ratios or proportions, and in many situations it makes 
more sense to focus on the relations of magnitudes rather than on them 
in isolation. When we use a map for example, we pay attention to the 
relative distances and positions in one space to be used in another space. 
That is, “twice as far” on the map (a distance of e.g., 2 in.) corresponds to 
“twice as far” in the world (a distance that can be arbitrarily long 
depending on the map scale). The importance of proportions has long 
been recognized by psychologists (Inhelder & Piaget, 1958; Siegler & 
Vago, 1978), and impacts a wide variety of domains including the 
perception of shapes (Sophian, 2000), probability judgment (Acredolo, 
Connor, Banks, & Horobin, 1989), music perception (Plantinga & 
Trainor, 2005), and mathematics (Lesh, Post, & Behr, 1988; Siegler, 
Fazio, Bailey, & Zhou, 2013), among others. Yet, surprisingly, we have 
fewer models, which are less developed, to describe how we mentally 
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represent proportions than those we have for absolute magnitudes (Chen 
& Verguts, 2017; Jacob, Vallentin, & Nieder, 2012; Matthews, Lewis, & 
Hubbard, 2016; Shepard, 1981). Are the representations of absolute 
magnitudes different from those of relative magnitudes? Can we use 
what we know from the former to understand and model the latter? Are 
the insights already seen in modeling absolute magnitudes also expected 
for the modeling of relative magnitudes? 

In this study we contributed to efforts in addressing these and other 
questions with a model of proportion representation. Our approach was 
to use the Cyclical Power Model by Hollands and Dyre (2000) as a 
starting point. This model advanced the idea that proportion represen-
tations result from the mental combination of absolute magnitude rep-
resentations. While promising and widely used, this model does not 
incorporate any effects of internal noise and relies only on bias to fit 
subject/group variance. We modified this model to include parameters 
for both bias and internal noise and tested its performance in behavioral 
data. We found these modifications to be central to providing an accu-
rate estimate of subject performance. 

Why are such modifications necessary? Many experiments have 
shown that our judgment of proportions is not accurate, but rather, 
admits of striking biases. In a typical experiment, subjects are presented 
with two stimuli (e.g. two tones of different durations; two shapes of 
different sizes) and the task is to estimate the magnitude of one stimulus 
relative to the whole magnitude (part/whole judgment). By plotting 
estimates against true proportion values, we can easily detect biases as 
departures from the diagonal line (perfect performance). Hollands and 
Dyre (2000) noted that for some continua, these distortions away from 
the diagonal follow a pattern of overestimation for true proportions less 
than 0.5 and underestimation above 0.5, while the reverse also happens 
(underestimation followed by overestimation), giving rise to an s-shaped 
curve illustrated in Fig. 1. These behaviors have been observed for many 
continua including line lengths (Spence, 1990), graphical elements 
(Spence & Krizel, 1994), spatial position (Huttenlocher, Hedges, & 
Duncan, 1991; Zax et al., 2019), numerosities (Varey, Mellers, & Birn-
baum, 1990; H. Zhang & Maloney, 2012) and time intervals (Nakajima, 
1987) among others (reviewed in Holland & Dyre, 2000). Different 
theories have been proposed to explain these patterns (Huttenlocher 
et al., 1991; Nakajima, 1987; Spence & Krizel, 1994), but a very 
promising one is the Cyclical Power Model. According to this model 
(developed after Spence, 1990), these biases arise from the biases in 
representing each of the magnitudes composing the stimuli (the part and 
the whole), which are described by power functions of the physical 
magnitudes (Steven’s power law) (Stevens, 1957). The mental combi-
nation of such biased representations in a proportion is what gives rise to 
the s-shaped curves shown in Fig. 1A. 

This ‘one-cycle’ version of CPM, in Fig. 1A, was then generalized to 
account for multi-cycle biases, e.g., in Fig. 1B. Indeed, studies using 
graphical shapes and geometrical regions (Huttenlocher et al., 1991; 
Spence & Krizel, 1994), showed response patterns consisting of com-
pressed repetitions of the one-cycle behavior, suggesting that subjects 
can mentally split the stimulus and/or the response space and use in-
termediate reference points, thus increasing their accuracy overall. The 
simplicity and explanatory power of CPM is noteworthy, and it is 
currently used as a tool for measuring proportional reasoning in 
different tasks including the popular number line task (Barth & Pala-
dino, 2011; Slusser, Santiago, & Barth, 2013; Zax, Slusser, & Barth, 
2019), and spatial position reproduction tasks (Zax, Williams, et al., 
2019). But besides these merits CPM offers only a partial picture of 
proportion representation. 

Missing from this model are estimates of internal noise, which 
together with bias form two key elements to characterize mental mag-
nitudes. According to behavioral and neural evidence, from the early 
sensory processing of incoming stimuli up to the execution of a response, 
the internal signal passes through a series of processing steps that may 
corrupt it in random ways, due in part to the intrinsic variability of brain 
dynamics (Garrett, Kovacevic, Mcintosh, & Grady, 2011) and neural 

activity more generally (Pardo-vazquez et al., 2019). This internal 
‘noise’ infuses a stochastic character to mental magnitudes, causing 
variability in our estimations, and by studying systematic patterns of 
variability in the responses it is possible to infer the noise associated 
with the perception of a given stimulus (see review in (Odic, Im, 
Eisinger, Ly, & Halberda, 2016; Wei & Stocker, 2015).1 The importance 
of measuring this parameter has been clearly demonstrated in studies 
with absolute magnitudes. For example, Odic, Libertus, Feigenson, and 
Halberda (2013) obtained measures of internal noise for the perception 
of area and approximate numerosity in different age groups, revealing 
great variations between subjects that helped disentangle develop-
mental trajectories which were obscured when using average measures 
of accuracy. Similarly, estimates of noise have been used to study con-
nections between cognitive systems (e.g. Lourenco & Bonny, 2016), and 
have guided the search for neural tuning curves in the brain (Nieder & 
Dehaene, 2009). These advances were made possible by taking internal 
noise seriously and attempting to model it, rather than failing to engage 
with it, as is generally current practice for proportion representation (e. 
g. Boyer & Levine, 2012; Boyer, Levine, & Huttenlocher, 2008; Vukovic 
et al., 2014). 

Furthermore, this situation for absolute magnitudes contrasts 
sharply with our knowledge of internal noise for the perception of 
relative magnitudes and proportions. A handful of brain studies have 
shown that the representation of relative magnitudes is also character-
ized by ‘noisy’ activations in similar fronto-parietal regions as those seen 
for the representation of absolute magnitudes (e.g. Jacob et al., 2012; 
Lewis, Matthews, & Hubbard, 2015). However, the field has yet to solve 
other puzzles related to noise. Earlier studies (that gave rise to the 
formulation of CPM) noted that proportion estimations do not distribute 
symmetrically around central tendency values (i.e. are skewed) (Spence, 
1990; Spence & Krizel, 1994. Spence and Krizel (1994) proposed that 
the skewedness in proportion estimation distribution arise from the 
action of repulsive forces that push estimations away from the bound-
aries. These forces were thought to result from the use of imperfect 
strategies on the part of subjects, which leave no room for responses to 
fall outside of the boundaries while leaving ample space for responses to 
be distributed away from the boundaries resulting in skewed or asym-
metric distributions. This distributional aspect was used to explain the 
origin of biases but no attempt to model it nor to derive an internal noise 
estimate was achieved. This lack of focus on internal noise can also be 
seen in models of probability/frequency judgments, where s-shaped 
distortions have been well documented, but where the focus has been in 
understanding the causes of these biases (see review in H. Zhang & 
Maloney, 2012). More recently, Rouder & Geary (2014) noted this gap 
and modeled intrasubject variability in proportion estimation. In 
particular, they pointed out 1) the implausibility of assuming equal 
normal errors in proportion estimation, as is typically done when fitting 
CPM both in earlier but also in more recent studies (e.g. Barth & Pala-
dino, 2011) and 2) the problems of using central tendency measures (i.e. 
aggregated group means) that do not capitalize on within-subject vari-
ability. They thus modified CPM and introduced a random error term 
that predicted varying levels of variability with presented proportions. 
This approach allowed them to describe developmental trajectories of 
performance in the number line task with more detail than by using CPM 
in the traditional way (i.e. traditional use of central tendency measures). 

This improved version of CPM highlighted the value of modeling 
variability of responses in proportion estimation, but it focused more on 
‘curve fitting’ than on investigating the cognitive sources of such vari-
ability (see Lee, 2018 for a discussion of approaches in cognitive 

1 As noted by (Lockhead, 2004), the term ‘noise’ may be incorrect because 
variability is actually structured, and Halberda (2016) and Halberda and Odic 
(2015) stress that ‘confidence’ may be the more appropriate term, but it has 
been used here for historical reasons derived from its use for the presentation of 
Signal Detection Theory (Green & Sweet, 1966). 
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modeling). Indeed, Rouder & Geary’s (2014) purpose was to accurately 
identify which variant of CPM (one-cycle, two-cycle or other candidate 
models) better accounted for children’s behavior in the number line 
task, and in so doing, variability was described but not related to its 
potential cognitive sources. Our study was thus motivated to fill this gap 
in knowledge, focusing on studying bias and response variability in 
proportion estimation from a more psychological perspective. Ours and 
Rouder & Geary’s (2014) are complimentary approaches. 

Our modeling approach is schematized in Fig. 2, along with the task 
we implemented. We followed the logic of cognitive generative models 
(e.g. Kemp, Bernstein, & Tenenbaum, 2005; for an overview see Lee, 
2011), in the sense of conceiving complex representations (i.e. propor-
tion) as the combination of simpler ones (i.e. absolute magnitudes). This 
was the rationale of CPM, and here we pushed it further and derived the 
internal representation of a proportion by fully accounting for the sta-
tistical properties of absolute magnitude representations. 

As in previous modeling approaches (e.g. Odic et al., 2016; Wei & 
Stocker, 2015), we assumed a Gaussian noise structure for absolute 
magnitudes representation, that fed into the proportion representations. 
Specifically, we assumed that physical magnitudes are mentally repre-
sented as Gaussian distributions ordered along an internal scale with 
two parameters (β and w): β controls the position of the Gaussians on the 
scale and thus determines the degree of bias, and w controls the vari-
ability of the distributions along the internal scale, which we assume to 
increase in proportion to their mean (scalar variability). The parameter 
w is typically called the Weber Fraction and it is an index of internal 
noise. Although not without criticism (e.g. Inglis & Gilmore, 2014), 

ample behavioral and neural evidence gives support to this account (e.g. 
Grondin & Killeen, 2009; Halberda & Odic, 2015; Pardo-vazquez et al., 
2019; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Whalen, Gallis-
tel, & Gelman, 1999), as does the potential success of our current 
modeling effort. 

To fit our model, we gathered empirical proportion estimation 
response data from a group of 4th grade children, tested in the pro-
portion estimation game of Fig. 2 (Gouet, Carvajal, Halberda, & Peña, 
2020; Möhring, Newcombe, Levine, & Frick, 2015; Spence & Krizel, 
1994). Different variants of this task have been implemented (Boyer 
et al., 2008; Boyer & Levine, 2015) and studies show that children of this 
age (9–10 years old) can readily solve proportional reasoning tasks 
while typically exhibiting wide variations between subjects and larger 
errors and biases compared to adult participants (Möhring et al., 2015), 
thus offering ideal opportunities to characterize mental processes at 
work (Möhring, Frick, & Newcombe, 2018; Spence & Krizel, 1994). 

While somewhat atypical, we would like to preview some of our 
results here in order to motivate readers by seeing the problems of noise 
and bias within the raw data itself. The total of all subject responses from 
the proportion estimation task from this article are shown in Fig. 3A. We 
can see that the bulk of responses fall along the main diagonal, as sub-
jects tracked the presented proportions. However, further inspection 
also suggests two additional groups of responses: one located along the 
anti-diagonal, suggesting a reversal of responses, and another group 
scattering more homogenously across the response space, suggesting 
random guesses. These behaviors were also seen at the individual level 
(Fig. 3C), replicating previous observations (e.g. Spence, 1990), and 

Fig. 1. Bias in proportion estimation and the Cyclical Power 
Model (CPM). The curves illustrate the different types of biases 
in proportion estimation. They are plots of CPM’s equation (y 
= pβ/(pβ + (1- p)β)), which has one free parameter β. A, when 
β < 1, responses are over- and then underestimated and when 
β > 1 the reverse is observed; no bias is seen when β = 1. B, the 
two-cycle CPM predicts the same pattern as in A, but scaled to 
the middle and repeated two times. It arises from the use of the 
half as a reference point, in addition to the references from the 
lower and upper ends (0,1).   

Fig. 2. Schematics of the proposed model and the task implemented. In each trial of the task, subjects see two-colored columns and judge the proportion of red size to 
the total size by clicking on the response bar. The task is framed as a juice game, and the cartoons on the left and right sides serve as anchor points, indicating a weak 
and strong flavor of juice respectively (see instructions in methods). In this example p = 0.25. According to our model, the red and blue sizes are mentally represented 
as Gaussian activations with some bias and internal noise (red and blue humps). These representations are then mentally combined, generating an internal rep-
resentation of a proportion, which is schematically mapped onto the response line. Responses are then modeled as samples from this internal representation, and by 
analyzing the whole pattern of responses we can recover the level of bias and noise in the original Gaussians. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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together they formed the building blocks of our mixture model. 
Traditionally, estimation data are fit to CPM using central tendency 

measures (means or medians) and least squares procedures (Barth & 
Paladino, 2011; Hollands & Dyre, 2000; Slusser et al., 2013; Spence & 
Krizel, 1994). This approach is shown at the group level in Fig. 3B 
(earlier work by Spence & Krizel, 1994; Hollands & Dyre, 2000, used 
aggregated means to fit models; most recent work from for example 
Barth & colleagues include both group and subject level measures). 
Although for both measures we observe s-shaped biases well described 
by CPM curves (consistent with previous results, Spence & Krizel, 1994; 
Hollands & Dyre, 2000), there are major differences between them, with 
means being best explained by a two-cycle model with βmean = 0.31, and 
medians by a one-cycle model with βmedian = 1.4). This implies quali-
tative differences between the two measures in terms of model selected 
and parameter estimates and reveals a problem of inconsistent fits to the 
data. The heavy tails and skewness in the distribution of responses likely 
explain these differences and render this approach unsuitable in this 
context. 

Similar concerns were raised by Rouder & Geary (2014), which 

motivated their modeling efforts to better account for within-subject 
variance. Yet Rouder & Geary’s model did not include contaminating 
behaviors (Fig. 3C) which can distort parameter estimates and their 
psychological interpretation. These methodological considerations, 
along with the idea of building a more principled model grounded in our 
knowledge of absolute magnitudes, motivated our proposal. 

As mentioned, the presence of contaminating responses motivated an 
extension of the original formulation having only an internal compo-
nent. Specifically, we observed responses consistent with random 
guessing, possibly due to inattention or boredom, and we also observed 
the reversal of responses. Reversals, as shown above, appear when a 
participant presented with a proportion of say, 0.25 gave a response 
around 0.75. These behaviors were also reported by Spence (1990), 
examining adult participants in proportion estimation tasks with 
graphical displays. Contaminating behaviors have been observed in 
other tasks, including reaction time experiments (Ratcliff & Tuerlinckx, 
2002), working memory (W. Zhang & Luck, 2008), discrimination task 
(Pica, Lemer, Izard, & Dehaene, 2004) and strategy-choice studies (Lee, 
Gluck, & Walsh, 2016). Misclassifying these behaviors as signal can 

Fig. 3. Estimation responses and CPM traditional 
approach. A, bubble plot of the full data set. The 
radius and color intensity of each dot is proportional 
to the number of responses falling near each point (20 
bins). B, mean and median estimates fitted to CPM 
using least squares. The curves show the model that 
best explain each measure (based on AICc values). 
Two-cycle model for the means, one-cycle for the 
medians. β estimates are in the legend. C, sample of 
individual data, with varying levels of reversal and 
guessing behaviors.   
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seriously affect parameter estimates and their psychological interpre-
tation, and researchers have advocated for methods to deal with them in 
formal ways (for review of different aproaches see Lee, 2018; Zeigenfuse 
& Lee, 2010). Thus, we complemented the internal component of the 
model described above with two contaminating pieces, representing 
guessing and reversal contributions. This extension resulted in a mixture 
model, that we framed in a hierarchical (multilevel) way. 

We had three main goals: 1) to derive an internal representation that 
mimics the asymmetry (skewness) seen in the distribution of proportion 
representations (Spence, 1990; Spence & Krizel, 1994); 2) to determine 
whether bias and internal noise affect proportion estimation in a manner 
consistent with that reported for the judgment of absolute areas or 
lengths (because of our generative framework); and 3) to determine if 
these additions to the model will result in smaller biases (approaching 1) 
when fitting, compared to fitting CPM in the traditional way, due to our 
model’s capacity to account for contaminating behaviors. 

Finally, we aimed at illustrating a concrete application of the model 
for the study of scaling effects in proportional reasoning. The scaling 
factor in a proportional reasoning task quantifies the degree of disparity 
between two spaces that are put in correspondence, like the scales used 
in maps. Recent studies have systematically studied the effects of this 
factor, showing that subjects produce more errors of estimation as the 
scale increases, and that children are more sensitive to this element than 
adults (Boyer & Levine, 2012; Möhring et al., 2015; Vasilyeva & Hut-
tenlocher, 2004). These effects are typically studied using overall mea-
sures of error, that may hide subtleties of both behavior and 
representation. Here we manipulated the ratio between the total height 
of the columns and the width of the response line in a systematic way 
and showed how modeling bias and noise can bring further insight to 
this phenomenon. 

2. Materials and methods 

2.1. Participants 

We evaluated fifty seven, healthy and typically developing 4th grade 
children (29 females, mean age, 9.4 years, range: 9–11 years) who were 
recruited from a public school in Santiago, Chile. This study was part of a 
larger intervention aimed at training math abilities in children and the 
data presented here were taken before the intervention began. The 
children and their parents/caregivers gave written assent and consent, 
respectively, before participating in the study. The study received the 
corresponding ethics board approval before beginning. 

2.2. Task and procedure 

The proportion estimation task was modeled after Möhring et al. 
(2015) (see also Spence & Krizel, 1994). During the task, children saw a 
two-colored column appear in the center of a computer screen, with the 
lower section colored red to represent strawberry juice and the upper 
section colored blue to represent water (Fig. 2). The task was to indicate 
how much the mixture of juice and water would taste of strawberry after 
mixing it up, by clicking on a rating scale located below the column. The 
appearance of each stimulus was controlled by subjects, by pressing the 
space bar on the keyboard, and was present until the subject responded 
or until a 5000 ms timeout. 

The set of stimuli was composed of 9 different proportions of juice to 
a total amount (0.03, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 0.97). 
These proportions were combined with three scaling factors (the ratio 
between the total height of the central column and the width of the 
response scale): 1:1, 1:2, and 1:3. Notice that this scaling factor ensured 
that children could not simply mentally rotate the central column and 
align it in order to generate an accurate answer on 1:2 and 1:3 trials. 
Rather, they must reason proportionally to generate their answer (as was 
done in other studies Möhring et al., 2018). Using this method, 27 
different stimuli were created, each presented twice, in two blocks, 

totaling 54 stimuli. The order of presentation within each block was 
pseudorandom, avoiding more than 2 consecutive repetitions of the 
same scaling factor. 

Children were evaluated in groups of 10 at their school, during class 
time, in a specially adapted room. There were 5 research assistants that 
evaluated two subjects each. Each participant was personally given the 
instructions of the task: “During the game you will see a column with a 
red part at the bottom, representing strawberry juice, very sweet, and a 
blue part above it representing water. Your task will be to indicate in this 
line below, how much the mixture of juice and water will taste of 
strawberry”. They were also told that after some time the mixtures 
would disappear so they had to respond quickly but as accurate as 
possible. 

There were 6 practice trials with the proportions: 0.95, 0.05, 0.7, 0.3, 
0.45, 0.6. (scaling factor 1:1 for the first three, and scaling 1:2 for the last 
three). The first two trials served to indicate the right and left anchor 
points respectively, while the others helped children to understand they 
could use the response bar continuously (see Gouet et al., 2020; Möhring 
et al., 2015). Visual feedback was given in practice trials, in the form of a 
colored rectangle surrounding the perfect response in the response bar. 
A neutral beep was also played after each click. After completing the 
practice, children were asked if they had understood the game; if not, 
they were given the instructions and practice trials again. Only a few 
children required a second instruction run. Test trials followed imme-
diately after the practice. Children received no feedback during test 
trials. For each trial we recorded the position in the rating scale and we 
included only test trials in the analysis. 

2.3. Modeling 

In this section we describe the structure of the models engaged for 
this study, placing more focus on mathematical aspects than on sub-
stantive (psychological) ones. The latter will be covered more thor-
oughly in the Results section. 

2.3.1. The cyclical power model (CPM) 
As mentioned in Introduction, the basic generative idea of Hollands 

and Dyre (2000)’s CPM is that the bias in proportion estimation results 
from the bias in mentally representing each magnitude composing the 
proportion stimulus. The equations of CPM are: 

One-cycle: 

Yp =
pβ

pβ + (1 − p)β 

Two-cycle: 

Yp =

pβ

pβ + (0.5 − p)β*0.5 if p < 0.5

(p − 0.5)β

(p − 0.5)β
+ (1 − p)β*0.5 + 0.5 if p => 0.5  

where Yp corresponds to the mean or median of responses for each 
presented proportion p. Consistent with the literature (e.g. Barth & 
Paladino, 2011), we used a nonlinear least square method to fit CPM 
(one-cycle and two-cycle), to both the means and medians of the original 
data. Goodness of fit were evaluated with Akaike Information Criteria 
corrected for small samples (AICc) (Burnham & Anderson, 2002), as we 
fitted mean and median of responses. 

2.3.2. Proportion estimation model (PEM) 
As indicated in the Introduction, we built a mixture model with two 

main pieces: one related to the internal representation of proportions, 
and another related with contaminating behaviors. The internal 
component was more theoretically motivated, and we will describe it 
first. Together they formed our mixture model, that we framed as a 
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hierarchical Bayesian mixture model (for an application of hierarchical 
Bayesian mixture models to the study of cognitive processes see Lee & 
Sarnecka, 2009); for an overview of these models see Lee (2018)). Some 
descriptions will be presented here and in Results, to emphasize or re- 
explain some key aspects of the model. 

2.3.2.1. PEM internal representation function. The internal representa-
tion was derived by assuming that subjects represented each magnitude 
composing the stimuli (the sizes of red and blue columns) as Gaussian 
distributions, that were then mentally combined in the form of a pro-
portion (Fig. 2). For each Gaussian, we assumed two properties: (1) they 
were centered in the magnitudes of the stimuli, compressed or expanded 
by a certain amount, and (2) they exhibited scalar variability (their 
standard deviations increased with their means). Thus we have: 

INTp =
R

R + B
,

where INT is the random variable of the proportion representation; R~N 
(pβ,w * pβ) and B~N((1 − p)β,w * (1 − p)β) correspond to the red and 
blue magnitude representations respectively.2 Note the similarity be-
tween this formulation and the one-cycle CPM, although here we use 
random variables. The parameter β controls the position of the Gauss-
ians (or the degree of compression/expansion of the internal scale), and 
thus the amount of bias, and w is the Weber fraction, which controls the 
spread of the distributions (internal noise). 

To find the probability density function (pdf) of INT (intp), we used 
the Jacobian method, which follows from a change of variables in 
multivariate functions (see Rice (2007) and Supplemental Material for 
details of this derivation). We obtained the following expression: 

int(z)p =
1

tr*(1 − z)2

∫ ∞

− ∞
fR

(
bz

1 − z

)

fB(b)|b|db  

where fR(⋅) and fB(⋅) are the normal densities corresponding to R and B as 
defined above; tr is a truncation element (the difference in the cumu-
lative distribution of INT between 1 and 0), which guarantees that the 
support for intp is the interval [0,1]. In SM we provide an equivalent 
expression for int(z)p, which uses the normal cumulative distribution, 
speeding up the computations when fitting the model. 

2.3.2.1.1. Two-cycles. The internal component for the two-cycle 
model has the following equations: 

INTp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
R

R + B

)

*0.5 if p < 0.5

(
R

R + B

)

*0.5 + 0.5 if p ≥ 0.5 

When p < 0.5 
R~N(pβ,w*pβ) and B~N((0.5 − p)β,w*(0.5 − p)β.) 
and when p ≥ 0.5 
R~N((p − 0.5)β,w*(p − 0.5)β) and B~N((1 − p)β,w*(1 − p)β). 
The pdf of INTp was derived using the same method as for the one- 

cycle model. Here we omit the formula, though there is very similar to 
that of the one-cycle model (see Supplementary Material). 

2.3.2.2. Including contaminating elements. As indicated above, visual 
inspection of the data suggested the presence of two contaminating 
behaviors (in addition to the responses along the main diagonal that 
would be captured by the internal component). These contaminations 

were reversal of responses (located along the anti-diagonal) and re-
sponses distributed more homogenously, suggesting random guesses, 
perhaps due to inattention (Fig. 3A). We included these two pieces in a 
mixture model (see Zeigenfuse & Lee, 2010). 

Thus, each response for a presented proportion p and for each 
participant j, Y j,p, was modeled as a sample from the mixture 
distribution: 

Yj,p ∼ λint jINTp
(
βj,wj

)
+ λrev jREVp

(
βj,wj

)
+ λguess jGuessp 

where INTp, Revp and Guessp are the internal and contaminating 
distributions with their respective weights ( λint , λrev λguess add up to 1). 
The reversal distribution was obtained by swapping p with 1-p in the 
expression for the internal; for the guessing behavior we assumed a 
uniform distribution between 0 and 1 – but this function can be adjusted 
to fit any described pattern (e.g., guessing in the middle, avoiding end 
points, etc.). Determining a strategic guessing function for any particular 
task would be important future work. 

2.4. Fitting PEM: A hierarchical Bayesian framework for PEM 

We framed our model as a hierarchical Bayesian model (Fig. 4). We 
adopted this approach, as previous studies have found less variance in 
recovered parameters than when using maximum likelihood in hierar-
chical models, especially in cases with small sample sizes (Farrel & 
Ludwig, 2008; Wiecki, Sofer, & Frank, 2013). Under this approach, 
uncertainty is assumed on the part of parameters in the form of priors, 
and the focus is placed on deriving the full posterior distribution of 
parameters given the observed data (see reviews and textbooks Gelman 
et al., 2014; Hoff, 2009; Lee, 2018). A graphical depiction of our model 
is shown in Fig. 4. 

In framing the model we used the indicator variable Zi,j, as it facili-
tates computations in mixture models (see for example Zeigenfuse & 
Lee, 2010; Gelman et al., 2014). We assumed this variable to be 
generated from a categorical distribution parameterized by λi = (λi, int, λi, 

rev, λi, guess), with i = 1, 2, …, m, subjects and j = 1, 2, …, n trials. Spe-
cifically, Zi,j = 1, 2, and 3 indicates that the response for subject i at trial j 
is from internal, reversal, and random guessing, respectively. As the 
parameter of the categorical distribution, each component of λi repre-
sents the probability of each type of response for subject i in all the trials. 
Therefore, they must add up to one, i.e., λi, int + λi, rev + λi, guess = 1. The 
subject-level parameter λi follows from a Dirichlet distribution param-
etrized by K = 3 and group-level parameter α = (α1,α2,α3). Each 
component αj when normalized to the sum of all the other components 
represents the group-level parameter for each λi (so for example, the 
group-level parameter of the reversal λi, rev is α2/(α1 + α2 + α3), and for 
guessing λi, guess would be α3/(α1 + α2 + α3). In Results we refer to them 
as alpha_rev and alpha_guess respectively. 

In addition, conditional on the presented proportion Pi,j, the 
response proportion Yi, j is distributed from a mixture of internal, 
reversal, and uniform distributions, where the former two mixture 
components are parametrized by the parameter βi and wi.The subject- 
level parameters βi and wi follow from Gaussian distributions with 
group-level mean and variance parameters (μβ,σβ

2) and (μw,σw
2) (see 

Wiecki et al., 2013). 
From the joint conditional posterior, we can derive marginal poste-

rior distributions (full conditional posteriors) for each parameter of the 
model (see Hoff, 2009 for a pedagogical introduction to Bayesian 
analysis). Then we can obtain estimates of our interest (e.g. mean, me-
dians, variance and credible intervals) and make statistical inferences. 

The joint posterior distribution of all parameters was approximated 
using a Metropolis-Hasting algorithm (Hoff, 2009). We chose conjugate 
priors for the indicator variables and the probabilities for different type 
of responses (categorical and Dirichlet distributions respectively), 
allowing direct calculation of the posterior distribution for these pa-
rameters. The values of the hyperparameters were chosen to produce 

2 We use p and (1- p) to represent the red and blue magnitudes as this no-
tation facilitates working with the equations in terms of p for both magnitudes. 
The value of p is obtained by dividing the red size by the whole and (1-p) by 
dividing the blue size by the whole. Equal results would be obtained if we used 
specific notations for the red size and blue size in the formulation of the 
Gaussians. 
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relatively vague/uninformative priors (Table 1). We implemented the 
mcmc algorithm in R and in C++ using the Rcpp package (Eddelbuettel, 
François, Allaire, Ushey, Kou, Russel, Chambers, & Bates, 2021) to speed 
up the calculations. All this material and codes are provided in SM. 

For each parameter of the model, we obtained 4 chains of 10,000 
posterior samples, with a burn-in of 5000 samples and thinning factor of 
5. Convergence of the Markov chains were diagnosed using a recent 
version of the R-hat proposed by Gelman and colleagues (Vehtari, Gel-
man, Simpson, Carpenter, & Bürkner, 2020) (criteria <1.01). For most 
group and subject level parameters we found convergence or slight de-
partures from this criterion for some subjects and parameter values. 
Having checked convergence, for inferences we used the samples from 
one chain for each of the models run. 

Model fit was assessed using posterior predictive checking (Gelman 
et al., 2014; Shiffrin, Lee, Kim, & Wagenmakers, 2008). Model 

comparison was made using Leave-One-Out Cross-Validation, and the 
Widely Applicable Information Criteria (WAIC), as both are recom-
mended for hierarchical Bayesian models (Vehtari, Gelman, & Gabry, 
2017), and are implemented in the loo package in R. The use of these 
measures requires comparing models with the same number of points. 
Because the two-cycle PEM is not defined at p = 0.5 (it produces a 
constant, with no error, see equations above), we excluded responses 
from this stimulus to make comparisons between the one- and two-cycle 
models (as in previous studies Rouder & Geary, 2014). In a second 
approach suggested by reviewers and explained in Results, we intro-
duced a random middle that allowed us to address this issue in a more 
satisfactory way. 

For the different steps of this work, we used the programs R (R 
Development Core Team, 2017) and MATLAB (The Mathworks, Inc., 
Natick, MA, USA). The codes and raw data will be provided in SM. 

3. Results 

3.1. Proportion estimation task 

For group level results, CPM fits, and a sample of individual subject 
variability please see Fig. 3 and text in the Introduction. 

3.2. Proportion estimation model (PEM) 

3.2.1. Model description 
We built a mixture model of proportion estimation in line with the 

considerations above. We assumed that responses came from three 
sources: an internal representation of a proportion plus two contami-
nation components: a reversal and guessing behavior. The internal 
component was more theoretically motivated and captured responses 
along the main diagonal in Fig. 3; the reversal and guessing behaviors 
were included more a posteriori, as part of data analysis. 

To build the internal distribution, we assumed that subjects represent 
each magnitude composing the proportion stimuli (the sizes of red and 
blue columns in the proportion estimation task) as Gaussian activations 
that are mentally combined to form a proportion (Fig. 2). The resulting 
distribution of internal representation of proportions is shown in Fig. 5. 
The Gaussians composing the proportion were centered in the magni-
tudes of the stimuli, compressed or expanded by a certain amount 
(captured by the bias parameter β) and displayed scalar variability (their 

Fig. 4. Graphical representation of PEM. Each plate shows variables at the same level and arrows indicate dependencies between them. According to the hierarchical 
structure, each subject has their own set of parameters, that determine the response distribution. These parameters are assumed to come from group-level distri-
butions as indicated. The shaded bubbles represent observed variables (stimuli and responses), while unshaded bubbles represent quantities (parameters) to be 
estimated by the model. See Table 1 for further details. 

Table 1 
Description of variables and parameters of PEM. The default values for the 
group-level parameters are the hyperpriors.  

Variable Default Value Interpretation 

Pi,j  Presented proportion for subject i at 
trial j 

Yi, j  Response proportion for subject i at 
trial j 

Zi,j 1 = internal, 2 =
reversal, 3 = random 
guess 

Indicator for types of responses for 
subject i at trial j 

λi = (λi, int, λi, rev, 
λi, guess) 

λi, int + λi, rev + λi, guess = 1 Probabilities of each type of 
response for subject i in all the trails 

βi  Bias parameter for internal/reversal 
distributions for subject i 

wi  Noise parameter for internal/ 
reversal distributions for subject i 

α = (α1,α2,α3) α~Unif(0.01,100) Group-level parameter of 
probabilities for each type of 
responses 

μβ μβ~Unif(0,10) Group-level mean parameter for 
parameter βi 

σβ
2 σβ

2~Unif(0,10) Group-level variance parameter for 
parameter βi 

μw μw~Unif(0,10) Group-level mean parameter for 
noise parameter wi 

σw
2 σw

2~Unif(0,10) Group-level variance parameter for 
noise parameter wi  
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standard deviations increased with their means). The rate of this in-
crease is a measure of internal noise and was captured by the parameter 
w (see Methods for details). 

Consistent with the formulation, we observe that the humps are 
pushed away from the half when β > 1, predicting underestimation for 
stimuli below 0.5 and overestimations above 0.5 (Fig. S1). Conversely, 
the humps move toward the middle when β values decrease below 1 
(predicting overestimations of proportions below 0.5 and underestima-
tion otherwise, consistent with the effects of β in CPM, see Fig. 1 and 
Fig. S1). On the other hand, the modulation of w causes a spread or 
shrinkage of the densities as the values of this parameter go up or down, 
respectively (see Fig. S1). 

We then added to this central structure the two contaminating be-
haviors (reversal and guessing) after data inspection (see above and 
Fig. 6). Thus, each response for a presented proportion p and for each 
participant j, Y j,p, was modeled as a sample from the mixture 
distribution: 

Yj,p ∼ λint jINTp
(
βj,wj

)
+ λrev jREVp

(
βj,wj

)
+ λguess jGuessp 

where INTp, REVp and Guessp are the internal and contaminating 
distributions, all with their respective weights. The reversal was derived 
from the internal function by just swapping the red and blue stimuli (i.e. 
p by 1-p), and the guessing behavior was assumed to be uniformly 
distributed between 0 and 1 (see Figure6). 

Paralleling the models of CPM, we developed one-cycle and two- 
cycle versions from these assumptions. and we framed the model as a 
hierarchical mixture model with subject and group level parameters (see 
Fig. 4 and details in Methods). 

3.2.2. Fitting PEM 
We implemented a Bayesian approach to fitting the model, as pre-

vious studies have found less variance in recovered parameters 
compared to using maximum likelihood in hierarchical models, espe-
cially in cases with small sample sizes (Farrel & Ludwig, 2008). Hier-
archical models are flexible tools that combine information across 
different levels of analyses, providing a balance between entire pooling 
of the data (i.e. aggregated group analysis) or complete independence of 
subjects (no pooling; see Gelman et al., 2014). The Bayesian approach 
also helps incorporating information of previous studies in the form of 
priors. Note that in our case we used the Bayesian framework as a 
‘methodological tool’ and not as part of the psychological components of 
the model (for a discussion of these distinctions see Lee, 2018; for 
Bayesian approaches to magnitude estimation see Petzschner, Glasauer, 
and Stephan (2015)). 

Fig. 7 summarizes fit results. Joint posterior distributions as those 
shown help seeing potential interactions (correlations) between 
parameter estimates, which may be obscured when plotting only mar-
ginal posterior distributions (Shiffrin et al., 2008). In our case, we 
observed no relation between parameter estimates. At the group level, 
bias estimates from PEM one-cycle were slightly higher than 1 (μβ =

1.074 [1.029,1.12] (Mean, [95% credible interval]) and slightly smaller 
than 1 for the two-cycle model (μβ = 0.949 [0.874, 1.024]). These es-
timates were much closer to one (i.e. inferred less bias) compared to 
those obtained with CPM at group level shown above (βmean = 0.31; 
βmedian = 1.4), consistent with the model’s capacity to absorb contami-
nating elements (see below). That is, using the traditional CPM 
approach, one will falsely find biased results where the CPM mistakes 
contamination for bias. In addition, the hierarchical framing of our 
model likely aids in absorbing part of the contaminating aspects (see 
below). Internal noise estimates were μw = 0.66 [0.584, 0.746] for one- 

Fig. 5. Visualizing PEM. Internal density functions 
(intp) for different presented proportions values (p) 
indicated on top of each hump. The parameters for 
the one- and two-cycle models are β = 1; w = 0.4. 
Note how the distributions for the one-cycle variant 
are progressively skewed as we move away from the 
middle (p = 0.5), and are symmetric around this 
point. These aspects were noted by Spence and Krizel 
(1994) and the model reproduces them, in line with 
our expectations. For the two-cycle, the distributions 
show the same behavior but they are compressed and 
repeated on each side of the half. In this model, the 
half is an anchor point and predicts no error.   

Fig. 6. Schematic representation of the mixture model. The humps along the response bars are the density functions of each of the components and for this stimulus 
(p = 0.25). These are hypothetical mental distributions (depicted for illustrative purposes) from which responses are sampled with probabilities proportional to the 
weights of each component. The parameters bias, internal noise, and weights have been omitted for clarity. 
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Fig. 7. Joint posterior distributions of group and subject level parameter. In group level panels (top row), dots are samples from the joint posterior distributions, with 
marginal densities on each side. In subject level panels, dots are the means of the posterior distributions for each subject, with their respective histograms. 

Fig. 8. Posterior predictive checking. The 
same sample of subjects shown in Fig. 3, 
with the predictions derived from their 
respective estimated parameters. Predictions 
(grey dots) were generated in two steps: 1) 
we sampled from the posteriors distributions 
of parameters, and 2) with these estimates, 
we obtained ‘n’ samples from the sampling 
distribution of the model (see equation in 
colors in the previous section). “n” was set 
equal to 54, the number of trials. We 
repeated this procedure 100 times and pro-
duced the bubble plots, superimposing the 
raw data (black dots). All subjects were best 
fit by a one-cycle PEM, except subject #114, 
who was best fit by a two-cycle PEM.   
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cycle and μw = 0.768 [0.667, 0.905] for the two-cycle PEM. Contrary to 
our expectations, these values were considerably higher than those re-
ported for discrimination of spatial length and area in children of the 
same age (Odic, 2017, reported values of w of 0.1 for both dimensions). 

At the subject level, we found that most subjects were best fitted by 
the one-cycle PEM (46 out of 57 subjects [81%]; PEM two-cycle: 11 
subjects [19%]). As shown in Fig. 7, we observed great variability in 
parameter estimates between subjects, especially in subjects best fitted 
by the two-cycle PEM. Bias estimates (posterior means) ranged between 
0.6 and 1.317 for the one-cycle, and between 0.844 and 1.341 for the 
two-cycle. Internal noise estimates also overlapped between the models, 
ranging [0.342, 1.096] for the one-cycle, and [0.354, 1.207] for the two- 
cycle PEM, and still they were relatively high (as those of the group- 
level). 

Regarding contaminating behaviors, we observed that reversal and 
guessing weights clustered around small values (see marginal histo-
grams in Fig. 7) (PEM one-cycle: alpharev = 0.101 [0.063,0.147], 
alphaguess = 0.082 [0.047,0.121], PEM two-cycle: alpharev = 0.059 
[0.035,0.09], alphaguess = 0.227 [0.172,0.289], but estimates covered 
the entire range between 0 and 1, suggesting extreme contaminating 
behaviors for some subjects. 

To evaluate the performance of the model we implemented posterior 
predictive checking (Fig. 8). This procedure helps evaluating the 
descriptive adequacy of the model and the data (Shiffrin et al., 2008) 
and allows predicting future observations (Gelman et al., 2014). Overall, 
we observed good agreement between the model and the data, and that 
the different degrees of contamination we previously noted by visual 
inspection (Fig. 3) were clearly detected by the model. This suggests that 
the great variability between subjects resulted from ‘genuine’ variability 
in psychophysical estimates rather than on miscounting contaminating 
elements on the part of the model. In fact, when we fit the model 
ignoring contamination, we observed much dispersion on psychophys-
ical estimates, especially for internal noise (Fig. 9). 

Fit results suggested good performance of the model, which was able 
to account for different response patterns at the subject-level. However, 
further inspection of the data exposed a gap of the model. Specifically, 
we noticed that some subjects tend to be very precise when estimating 
proportions equal to the half (p = 0.5), even when their overall response 
pattern is captured by a one-cycle model (see for example subject#115 
in Fig. 8). This is problematic for the model, because the one-cycle 
predicts the opposite behavior, i.e., increasing response variance to-
ward the middle (see Figs. 5 and S2). The two-cycle version would seem 
to better account for this behavior. However, this model actually pre-
dicts no error at all at this point as it is conceived as a true anchor and so 
the function is undefined there (see how the data of subject#114 in 
Fig. 8 are not predicted in the middle; also see Fig. 5 and S2). 

To tackle this issue, we introduced a simple modification to PEM, by 
assuming that responses from the middle can come from a different 
source than the rest of proportion estimations. We modeled this source 
as a Gaussian centered at the middle, and with standard deviation 
proportional to a parameter ‘w_middle’. The idea of appending a random 
middle was also suggested by Rouder & Geary (2014) to deal with the 
indefinability of their two-cycle model, but they did not assess it further 
(see Appendix in Rouder & Geary (2014)). Here we considered random 
middles for both the one-cycle and the two-cycle versions of PEM 
(Fig. S2 C,E). For the two-cycle, we included the corresponding possi-
bility that subjects were more precise at the middle and the quarters 
(0.25, 0.75) (Fig. S2 D). 

Thus, we fitted and compared 4 ‘variants’ of PEM: two versions of 
one-cycle (the standard PEM “one-cycle” and with random middle 
(“one-cycle_H”), plus two versions of the two-cycle (with random middle 

(“Two-cycle_H), and with random middle and random quarters (“Two- 
cycle_H&Q”)).3 All have the same mixture structure but differed in the 
internal functions. 

In line with the previous results, we found that most children were 
best fit by one-cycle models. Notably, we observed that more than half of 
those kids were best fit by the version with random middle (“one- 
cycle_H”: 31 children [54%]; “one-cycle”: 15 children [26%]). The 
remaining children were divided similarly between the two-cycle 
models (‘two-cycle_H’: 5 children [9%]; ‘two-cycle_H&Q’: 6 children 
[11%]). Also, consistent with the idea that estimates in the middle were 
more precise, we found that estimates of internal noise from the middle 
(w_middle) were significantly smaller than those obtained from the rest 
of the proportion values (model: “one-cycle_H”: μw_middle = 0.312 
[0.242,0.388]; μw = 0.671 [0.604, 0.747]; model: “two-cycle_H”: 
μw_middle = 0.294 [0.255,0.372]; μw = 1.24 [1.043, 1.489]); “two- 
cycle_H&Q”: μw_middle = 0.496 [0.447,0.55]; μw = 1.006 [0.874, 
1.143]). 

These results suggest that adding an independent source of noise to 
the middle (and the quarters) provide a better description of the data 
than using the standard PEM for some subjects. This was also confirmed 
by posterior predictive checking (see Fig. 10). 

3.3. Applying PEM: Assessing scaling effects on proportion estimation 

In this last section we highlighted the value of using our model to the 
study of scaling effects in proportional reasoning. In a proportional 
reasoning task, the scaling factor tracks the degree of disparity between 
the two spaces put in correspondence (the multiplicative relationship – 
similar to our example of a map being related to the world by a scaling 
factor). Recent studies have shown that subjects are sensitive to this 
factor, displaying higher errors as the scaling increases (Boyer & Levine, 
2012; Möhring et al., 2015; Vasilyeva & Huttenlocher, 2004). The 
typical approach would look at the overall error – but does an increase in 
error suggest a change in bias, in internal noise, in guessing, or in all 
three? Do overall patterns of responses change across scaling levels so 
that different PEM variants better describe them? 

To study this, we varied the ratio between the total height of the 
columns and the width of the response line (as in Möhring et al., 2015) in 
three levels (Fig. 11A). As the width of the response line was held fixed, 
stimuli got progressively smaller as scaling factor increased, thus 
requiring scaling up the stimuli. 

As shown in Fig. 11A, we found that the percentage of subjects best 
fit by the different versions of PEM varied across scaling factor levels. A 
noteworthy aspect was the increase in the percentage of children best fit 
by the one-cycle model as scaling increased. Interestingly, we observed 
that many subjects were best fit by the same model across scaling1:2 and 
scaling 1:3, while others displayed more variability in their selected 
model. 

Regarding parameter estimates, we focused on the fits of the one- 
cycle and two-cycle_H&Q for illustrative purposes. For both models, 
we observed a trend of increase in the population bias and noise pa-
rameters with scaling levels (Fig. 11C). The amount of guessing and 
reversal did not vary across scaling levels (see how the curves overlap in 
Fig. 11C). The modulations of μw are in line with previous reports 
showing that estimation errors increase with scaling factor levels 
(Vasilyeva & Huttenlocher, 2004). Interestingly, the specific values μβ, 
which increased from around μβ = 1 for scaling 1:1 to values above 1, 
indicate that responses were progressively biased and “pushed away” 
from the reference points (the middle and the quarters) as stimuli 
became smaller and smaller. These values (βs > 1) are consistent with an 
expansion of the signal as stimuli were scaled up. This subtle behavior 

3 We did not include the two-cycle PEM without random middle in this 
comparison precisely because it has the problem of not fitting estimations from 
the middle and so it includes less points. 
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would not have been evident had we focused on overall measures of 
error. 

4. Discussion 

In this study we developed a model of proportion estimation, that 
extends previous approaches in principled and methodological ways. 
Following the generative logic of CPM, we derived a statistical 
description of the internal representation of a proportion, with bias and 
noise parameters directly linking absolute with relative magnitudes. 
Methodologically, we introduced a mixture of components to quantify 
contaminating behaviors (reversal and guessing) and framed the model 
in a hierarchical way. We found that the model could mimic important 
aspects of the variability of responses (skewedness) and displayed good 
descriptive adequacy with the data, capturing commonalities but also 
great variations between subjects in terms of psychophysical estimates 
and contaminating behaviors. Finally, we reported consistent modula-
tions of psychophysical parameters with spatial scaling levels, providing 
insight on an important phenomenon in proportional reasoning. 

In building the model, we made two central assumptions: that sub-
jects mentally computed proportions of noisy representations, and that 
such individual representations were described by Gaussians with scalar 
variability. To what extent did we find support for these assumptions, 
and for the model more generally? On the one hand, we found empirical 
support for the model in that the shape of the internal density has the 
same asymmetries (skewedness) that had been previously observed in 
estimation data (e.g. Spence, 1990), thus mimicking an important 
empirical aspect of response variability; Spence and Krizel (1994) 
explained the skewedness by proposing repulsion forces that push re-
sponses away from the boundaries. The existence of such forces was 
attributed to the use of imperfect strategies on the part of subjects but as 
noted by Hollands and Dyre (2000), the nature of such forces was not 
independently verified. More importantly, such a theory is incompatible 
with the observation that the bulk of responses can move toward the 
boundaries (as when β > 1) while also displaying skewedness. Our 
model was able to reproduce these patterns by just assuming that sub-
jects mentally combined noisy internal representations of absolute 
magnitudes as mental proportions. Additionally, we observed good 

Fig. 9. Effects of ignoring contaminating elements on parameter estimates. Shown are subjects best fit by one-cycle PEM with and without contaminating behaviors. 
Note the larger scale in subject-level noise estimates. 

Fig. 10. The same sample of subjects as in 
Fig. 8. Predictions are now from the different 
variants of PEM, as indicated on top of each 
plot. Compare the fits from subjects 115, 114 
and 313 with those from Fig. 8; now they 
show much better adequacy. Also, individual 
trials have been colored (‘filtered’) according 
to their likelihood values of PEM distribu-
tions: internal, reversal and guessing. The 
parameter estimates (β and w) used for the 
internal and reversal densities are the pos-
terior means obtained from the best fit 
variant of PEM for each subject.   
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performance of the model in describing various aspects of the data, 
which together provide empirical support for the model. And, we can 
answer these questions by checking whether the predictions of the 
model (derived from the assumptions) were met or not. 

Due to the simple generative framework, we expected to find similar 
levels of bias and internal noise as those reported for absolute magni-
tudes. Indeed, although our results showed great variability in bias es-
timates between subjects, group-level estimates yield values comparable 
to those reported in previous studies for the perception of absolute areas 
and lengths (values respectively near 0.8 and close to 1; Teghtsoonian, 
1965), in support of the model. These values were similar to those re-
ported by Spence and Krizel (1994) (β = 0.8 at group level analysis), 
who implemented a very similar task to ours (in kids of a similar age, but 
framed as a graph-reading task and not as a juice task as in our case). 
However, internal noise estimates concentrated around much higher 
values (w = 0.6) than those reported for absolute areas and lengths (w =
0.1, as observed by Odic (2017) in children of the same age). These 
discrepancies cast doubts on the model’s tenet of linking absolute with 
relative magnitudes through internal noise, yet we believe that meth-
odological differences can account for them. 

Indeed, while Odic (2017) used irregular blobs as stimuli for area 
judgments here we used rectangular shapes. This difference may matter, 
considering the results of Morgan (2005) who found higher weber 
fractions than Odic for the discrimination of areas using rectangles 
(although smaller than ours) but in adult participants. Given that these 
were adults participants, we would expect them to have smaller w’s than 
our kids, just like for the development of approximate number precision 
(Halberda & Feigenson, 2008; Halberda, Ly, Wilmer, Naiman, & Ger-
mine, 2012). So, in this scenario, our estimates might be accurate. 
Alternatively, there may be true differences in noise estimates arising 
from the tasks implemented (estimation versus discrimination tasks) 
(Guillaume, Gevers, & Content, 2015), regardless of whether we 
compare absolute or relative magnitudes. In this scenario, the assump-
tion of the model linking absolute with relative magnitudes would be 
valid but possibly restricted to estimation tasks. Follow up studies using 
proportion estimation of blob figures and regular shapes, combined with 
absolute estimation and discrimination tasks could shed additional light 
on this issue. 

The above considerations suggest that our model is sufficient to 
explain proportion estimation data, but are these model assumptions 
necessary? In other words, could we think of a different mental operation 
or a different source of noise and obtain an equally satisfactory model? 
This is a harder issue to evaluate, because it implies acknowledging what 
constitutes a ‘good model’ besides its capacity to fit data, and also 
because the space of candidate models can be large (Lewandowsky & 
Farrel, 2011). We assumed a Gaussian model with scalar variability to 
structure the representation of individual magnitudes, because it pro-
vided a relatively simple yet well supported account to build the model, 
but other models are possible. We discarded the log-Gaussian model 
(Dehaene, 2007), which assumes equal-variance normal activations on a 
log internal scale, because it can only account for compressive biases 
that push proportion estimations toward the middle, but it cannot ac-
count for the reverse situation (i.e. expansive biases that push estima-
tions away from the middle). Furthermore, recent evidence suggests that 
the power function, but not logarithmic functions, can properly describe 
sensory and neural processes that transform physical scales into internal 
scales (Pardo-vazquez et al., 2019). On the other hand, Laming (1997)’s 
χ2 (chi-square) model of magnitude representation, which has received 
relatively less consideration in the literature could be an interesting 
alternative to explore in future studies. Especially, because the Beta 
distribution (widely used in statistics to model random variables boun-
ded between 0 and 1) can be derived from the proportion of χ2 distri-
butions, thus potentially offering a compelling model for the internal 
representation to contrast with our account. However, the seemingly 
unclear substantive interpretation of shape parameters in the χ2 model, 
still warrant further study to make this an interesting idea from a psy-
chological point of view. 

One potential limitation of our study is that our model did not 
explicitly consider potential contributions of memory, attention and 
motor processes that may also contribute to generate variability and 
biases in estimation behavior (Lockhead, 2004; Odic et al., 2016; 
Petzschner et al., 2015; Shepard, 1981; R. Teghtsoonian, 2012; Wei & 
Stocker, 2015; Zax, Williams, et al., 2019). While these factors can be 
incorporated in further elaborations of the model, our formulation is not 
incompatible with an influence of these factors as manifested in the 
psychophysical parameter. Thus, while it is implicit in our 

Fig. 11. Effects of scaling factor on model selection and parameter estimates. A, proportion of subjects that were best fit by the different models. On top of each 
column, a stimulus depicting scaling factor level is displayed. B, models selected for each participant and scaling factor level. C, Posterior distribution of group-level 
parameters for the one-cycle and two-cycle_H&Q models. Note how the curves are progressively shifted to the right for bias and noise parameters, while they overlap 
for contaminating weights. 
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representational model that internal noise and bias result mainly from 
sensory measurement processes (Odic et al., 2016; Pardo-vazquez et al., 
2019), we avoided adopting a strong interpretation of the psychological 
meaning of w and β parameters, which likely represent a composite of 
processes rather than a monolithic aspect of mental representations (see 
the above cited papers), and accordingly presented the model in a 
general way. 

Furthermore, the fact that we implemented a line as the response 
scale renders the assumption that it contributed zero bias plausible, 
since estimation studies have shown that the perception of lengths is 
close to veridical (M. Teghtsoonian, 1965), thus suggesting that the bias 
(and noise) may arise from the perception of stimuli and/or from the 
mapping onto the response scale (see Shepard, (1981) for a thorough 
treatment and interpretation of bias in cross-modal matching tasks). 

A second, related limitation of our study, is that we implemented 
only one proportion estimation task to empirically evaluate the model 
which may limit the generality of our conclusions. This may be valid 
with respect to the parameter estimates we obtained, and to our ability 
to generalize our results to other studies/tasks, but it does not obfuscate 
the theoretical validity of the model itself. Moreover, as CPM can be seen 
as a special case of our account, the empirical validity of CPM is auto-
matically inherited by our model. In contrast, the task we chose has 
some noteworthy advantages (some discussed by Spence & Krizel, 
1994), for example, it is fairly intuitive for children as it does not require 
an explicit knowledge of symbolic proportions (i.e. or fractions like 3/5) 
and the specific stimuli we used (continuous bars) reduce the likelihood 
of inducing a whole-number bias. This bias broadly refers to the wrong 
use of whole number strategies in fraction-related problems (Siegler 
et al., 2013), and in our context applies to the potential focus on only one 
piece of information (e.g. numerator) during the proportion estimation 
task. Studies have shown that the use of discrete stimuli (e.g. a collection 
of balls) are more likely to induce this bias than using continuous stimuli 
as the ones employed here (Boyer et al., 2008; Jeong, Levine, & Hut-
tenlocher, 2007). Finally, recent studies have successfully used this task 
to uncover links between the accuracy in estimating proportions with 
formal math abilities in children (Gouet et al., 2020; Möhring et al., 
2015), suggesting wider applications of this task to connect with other 
fields in cognitive research. 

An interesting result showed up when we introduced the new vari-
ants of PEM to account for the high precision of estimations in the 
middle. This aspect was highlighted by reviewers and we attempted a 
simple solution, following similar previous attempts (see Rouder & 
Geary, 2014). Remarkably, we found that a great proportion of subjects 
were best fit by the variant of one-cycle that predicts precise estimations 
in the middle. This means that some subjects were very precise in the 
middle but still do not ‘use’ it as a virtual anchor (as is the case for those 
who were best fit by two-cycle model). Developmental studies have 
shown that the ‘half’ (Spinillo & Bryant, 1991) and the ability of mental 
split (Confrey, 1994) play crucial roles in early proportional reasoning 
abilities (Spinillo & Bryant, 1991), and that children progressively use 
the middle as an anchor point (e.g. Möhring et al., 2018; Slusser et al., 
2013). Speculating, we think that the group of subjects just referred to 
may be in an intermediate state between one-cycle and two-cycle 
behavior (see also (Zax, Slusser, & Barth, 2019). Future studies with a 
wider age range could further elaborate on the substantive validity of 
the variants of PEM, and refinements could be incorporated, for example 
in the form of priors that give more weight to the representations of the 
middle, under the efficient coding and Bayesian scheme of Wei and 
Stocker (2015) or through category models (Huttenlocher et al., 1991). 

In the last part of our work, we sought to illustrate the utility of our 
model to the study of scaling effects. The nature of the scaling process is 
not yet clear, but it is thought to involve some analog transformations 
that mentally shrink or expand the representations generated from one 
space to be equivalent to those from another space (Boyer & Levine, 
2012; Möhring et al., 2018; Vasilyeva & Huttenlocher, 2004). Our re-
sults give support to this idea, in showing a monotonic increase of bias 

and internal noise with scaling levels, consistent with an expansion of 
the internal signal as stimuli had to be scaled-up. These results find nice 
parallels with results from the literature of probability and frequency 
judgment. As referred to in the Introduction, different studies have 
found s-shaped pattern of biases when subjects estimate the frequency of 
discrete events or elements (e.g. Varey et al., (1990), reviewed in H. 
Zhang & Maloney, 2012). Investigating the factors that modulate biases 
in probability/frequency estimation, H. Zhang and Maloney (2012) 
noted from their results and others that as the sample size from which 
estimations are made gets smaller, small frequencies are underestimated 
and high frequencies are over estimated (similar to what we observe 
here when the columns get progressively smaller with scaling levels). It 
will be interesting to test whether concomitant modulation of internal 
noise can also be inferred in these frequency/probability judgments and 
decision-making, also incorporating dynamical aspects of probability 
perception (Gallistel, Krishan, Liu, Miller, & Latham, 2014). Para-
phrasing Zhang and Maloney (2012), having developed the tools for 
measuring bias and internal noise, the key question is to understand 
what are the functional implications of these psychophysical signatures. 

We admit that, in retrospect, it seems obvious that one cannot arrive 
at an accurate understanding of the psychology that supports the suc-
cessful performance of a task without having a model that successfully 
fits the data in its most raw form. It is in the raw form that all of the 
nuance of performance is laid bare. And, perhaps, proportion estimation 
is an interesting task precisely because of the subtleties in response 
profiles and the links from internal representations of absolute magni-
tudes (i.e., lengths) to proportions (i.e., ratios of lengths). PEM is one 
attempt to take these considerations seriously. 
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