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Abstract

Given a rich environment, how do we decide on what information to use? A view of a single entity
(e.g., a group of birds) affords many distinct interpretations, including their number, average size, and
spatial extent. An enduring challenge for cognition, therefore, is to focus resources on the most relevant
evidence for any particular decision. In the present study, subjects completed three tasks—number dis-
crimination, surface area discrimination, and convex hull discrimination—with the same stimulus set,
where these three features were orthogonalized. Therefore, only the relevant feature provided consis-
tent evidence for decisions in each task. This allowed us to determine how well humans discriminate
each feature dimension and what evidence they relied on to do so. We introduce a novel computa-
tional approach that fits both feature precision and feature use. We found that the most relevant feature
for each decision is extracted and relied on, with minor contributions from competing features. These
results suggest that multiple feature dimensions are separately represented for each attended ensemble
of many items and that cognition is efficient at selecting the appropriate evidence for a decision.

Keywords: Approximate Number System; Magnitude discrimination; Psychophysics; Computational
modeling; Generalized Magnitude System

When viewing a scene, multiple interpretations can often be supported by the same per-
ceptual evidence. For instance, imagine that you are looking at a leafy green shrub on the
edge of a forest path. The shrub is smaller than a nearby oak tree, but it has more leaves.
So which plant should we say has “more?” Answering such a question requires a decision
of what feature to focus on: physical size, or the number of leaves. How do we determine
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which interpretation is right in the moment, and how do we maintain that interpretation while
suppressing conflicting ones?

Sometimes, perceptual evidence dramatically supports one interpretation over another, and
low-level salience can lead to a predisposition toward one interpretation (Itti, Koch, & Niebur,
1998). Other times, our experience can spontaneously switch between multiple interpretations
in the absence of differences in saliency, as is the case with bistable images (Kleinschmidt,
Büchel, Zeki, & Frackowiak, 2002). Intentional selection can also guide which features to
focus on, especially if the goal is known in advance (as in visual search tasks, e.g., “Decide as
quickly as possible whether there is a green H among red Hs and green Xs”; Treisman, 1982),
but also retrospectively (in memory search, e.g., “Was this item present in the previously-
memorized list?”; Cavanagh, 1972). Perceptual evidence and goals interact in varied ways to
determine what one focuses on.

Here, we use magnitude perception as a case-study to investigate how the mind navigates
the process of selecting among multiple interpretations. The evolutionarily ancient ability
to rapidly extract the number of objects from ensembles relies on the Approximate Number
System (ANS; for a review, see Feigenson, Dehaene, & Spelke, 2004). Similarly, we have the
ability to encode the convex hull that surrounds a cluster of items (Clayton & Gilmore, 2015;
Clayton, Gilmore, & Inglis, 2015; Gilmore, Cragg, Hogan, & Inglis, 2016; Norris, Clayton,
Gilmore, Inglis, & Castronovo, 2019) or the average or total area of items (Fuhs, McNeil,
Kelley, O’Rear, & Villano, 2016; Gebuis & Reynvoet, 2011; Smets, Sasanguie, Szűcs, &
Reynvoet, 2015; Szűcs & Myers, 2017; Szűcs, Nobes, Devine, Gabriel, & Gebuis, 2013). Our
ability to discriminate ensembles based on these features is often studied using comparison
tasks, where two groups of dots are displayed next to each other, intermixed, or in sequence,
and the job of the participant is to respond which of the two groups contains more dots, a
larger convex hull, or more total pixels (Anobile, Cicchini, Pomè, & Burr, 2017; Braham,
Elliott, & Libertus, 2018; Dakin, Tibber, Greenwood, Kingdom, & Morgan, 2011; DeWind &
Brannon, 2012; Feigenson et al., 2004; Franconeri, Bemis, & Alvarez, 2009; Fuhs et al., 2016;
Gebuis, Cohen Kadosh, & Gevers, 2016; Halberda & Feigenson, 2008; Halberda, Mazzocco,
& Feigenson, 2008; Libertus, Feigenson, & Halberda, 2013; Mazzocco, Feigenson, & Hal-
berda, 2011; Odic, 2018; Odic, Hock, & Halberda, 2014; Odic, Libertus, Feigenson, & Hal-
berda, 2013; Odic, Pietroski, Hunter, Lidz, & Halberda, 2013; Pica, Lemer, Izard, & Dehaene,
2004; Tomlinson, DeWind, & Brannon, 2020; Wang, Halberda, & Feigenson, 2017).

Number perception is a particularly interesting case for the question of how one selects
among multiple interpretations of a stimulus because of the ongoing debate regarding the
status of number representation. It has been argued that so-called “number responses” are
actually responses to other ensemble features, such as surface area or convex hull (Clayton
et al., 2015; Clayton & Gilmore, 2015; Dakin et al., 2011; Durgin, 1995, 2008; Gilmore
et al., 2016; Morgan, Raphael, Tibber, & Dakin, 2014; Norris et al., 2019; Smets et al., 2015;
Szűcs et al., 2013; Szűcs & Myers, 2017). Similarly, it has been claimed that number and
surface area are perceived holistically as integral dimensions, and, therefore, cannot be sep-
arately represented (Aulet & Lourenco, 2021b). The primary evidence in support of shared
underlying representations between number and non-numerical features comes in the form of
congruency effects in discrimination tasks, where subjects are more accurate on trials where
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the larger group with respect to number is also the larger group with respect to other features,
such as surface area (e.g., Hurewitz, Gelman, & Schnitzer, 2006). From an evolutionary per-
spective, it has been argued that shared representations between different ensemble features
would be a useful strategy because features such as size and convex hull tend to be statisti-
cally correlated with number in the environment, thus making a concrete feature such as size
a useful heuristic for number (Leibovich, Katzin, Harel, & Henik, 2017).

Others suggest that number is not only represented independently from other features,
but in fact has a privileged representational status in the human mind (Anobile, Cicchini,
& Burr, 2016; Clarke & Beck, 2021). Some evidence that number is represented indepen-
dently of other ensemble features comes from cross-modal studies in which neonates match
number across visual and auditory stimuli; these provide strong evidence that non-numerical
visual features cannot be the only means through which number responses are generated
(Izard, Sann, Spelke, & Streri, 2009). Also, approximate number performance predicts sym-
bolic mathematical skills, providing evidence for shared numerical content between the rep-
resentations underlying these different tasks (Halberda et al., 2008; Libertus, Feigenson, &
Halberda, 2011; Wang et al., 2017). In response to congruency effects, it has been argued that,
rather than reflecting shared underlying representations, such effects may instead occur due
to Stroop-like response competition between independently represented dimensions (Clarke
& Beck, 2021; Picon, Dramkin, & Odic, 2019).

With regard to the potential primacy of number, and consistent with it not being derived
from representations of other ensemble features, in some studies, the congruency effect of
number influencing judgments of area is stronger than the opposite effect (Tomlinson et al.,
2020). Further, a tendency to spontaneously focus on numerosity over other ensemble magni-
tudes has been documented in both adults and young children, although there are individual
differences in the degree of the effect (e.g., Cicchini, Anobile, & Burr, 2016; Hannula &
Lehtinen, 2005). Compared to monkeys, humans are uniquely biased toward selecting num-
ber as their target dimension when categorizing groups of dots, and this bias is independent
of mathematical education experience, again suggesting that number has a privileged status
in the human mind (Ferrigno, Jara-Ettinger, Piantadosi, & Cantlon, 2017).

One way to partially reconcile these competing arguments is to posit shared computational
resources underlying comparisons with different magnitudes, while maintaining that each
magnitude is represented independently. For instance, the Shared Computations Account
(SCA; Odic et al., 2013) claims that, while each magnitude dimension has its own dedi-
cated representation—and thus its own internal precision—performance across dimensions
is empowered by shared computational resources (e.g., shared ordinal, arithmetic, and log-
ical computations; Odic et al., 2013). Such shared computation could result in correlated
performance across dimensions despite the representations themselves having nonidentical
precision. A nuance to the SCA account is that the required ordinal comparison machin-
ery is typically assumed to be errorless in its execution and should, therefore, not lead to
measurable individual differences (Halberda & Feigenson, 2008; Libertus et al., 2013; Odic
et al., 2013; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004, 2010). Thus, if we find correla-
tions in performance across psychological dimensions, these may arise from shared executive
function resources (e.g., staying on task), or error-prone ordinal comparisons (Brannon, Lutz,
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& Cordes, 2006; Cordes & Brannon, 2008; Droit-Volet, Clement, & Fayol, 2008; Feigenson,
2007; Odic et al., 2013; Odic, 2018).

In this context, we sought to measure human flexibility at discriminating ensembles of
dots based on three features: number, surface area, and convex hull. Although recent work
indicates that people represent additive area rather than total surface area (Yousif & Keil,
2019; but see Park, 2022), the vast majority of previous number research has focused on total
area (e.g., Clayton et al., 2015; DeWind, Adams, Platt, & Brannon, 2015; Leibovich et al.,
2017; Norris et al., 2019; Tomlinson et al., 2020), so we decided to use this in our experiment;
however, our experiment and model could easily be modified to accommodate for different
an alternative area metric as well as for other features entirely. Participants were shown a
stimulus set containing segregated groups of blue and yellow dots, and were instructed to
respond, in separate blocks, which of the two groups was larger with respect to each feature.
We chose total surface area and convex hull because they are some of the most-frequently
investigated dimensions in the number literature (e.g., area: Brannon et al., 2006; DeWind,
Bonner, & Brannon, 2020; Odic et al., 2013; Tomlinson et al., 2020; convex hull: Braham
et al., 2018; Clayton et al., 2015; Clayton & Gilmore, 2015; Gilmore et al., 2016; Norris
et al., 2019) and additionally, these dimensions can be varied separately from one another,
which allowed us to quantify each of their individual contributions. Importantly, the stimuli
were identical across the three tasks, which enables us to directly compare responses to a
selfsame image. Subjects returned 3 months later to complete the experiment again, which
allowed us to evaluate to what extent performance was stable over time.

Additionally, we introduce a computational model that empowers us to evaluate the extent
to which subjects are relying on competing, nontarget features during a given task. A novel
contribution of this model is that it allows us to take into account representational precision
when quantifying the degree to which a given feature is being used. Although some theoretical
work has been done to differentiate between these two constructs (e.g., Aulet & Lourenco,
2021a; Cicchini et al., 2016; Tomlinson et al., 2020), previous modeling efforts have typically
conflated them (e.g., DeWind et al., 2015). An additional novel contribution of this work is
that, with this modeling approach and our retesting procedure, we are able to investigate
the stability not only of general performance on these magnitude comparisons, but also the
internal factors (precision and feature reliance) underlying that performance.

We had four main behavioral predictions that we tested in this work. First, we expected
to find differences in performance between tasks, particularly expecting surface area perfor-
mance to be better than number performance (e.g., Odic et al., 2013). Importantly, with our
model, we will be able to disentangle whether accuracy differences are due to differences
in representational precision or differences in the relative weighting of target and nontarget
features on each task. Second, we also expect to find congruency effects in all three tasks,
where performance is worse on incongruent trials than on congruent trials. If congruency
effects are indicative of shared representations underlying responses across different tasks,
as has been claimed, then we would expect to find that the relative weightings of differ-
ent features should be similar across tasks. Third, we expected to find stability in perfor-
mance across time, particularly in number, which has been previously demonstrated and has
been attributed to stability in representational precision (Clayton et al., 2015; DeWind &
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Brannon, 2016; Elliott, Feigenson, Halberda, & Libertus, 2019; Libertus & Brannon, 2010;
Price, Palmer, Battista, & Ansari, 2012; Purpura & Simms, 2018). This work will not only
provide further evidence about the stability in magnitude comparison performance (including
in other features, surface area and convex hull, that have not been as rigorously tested with
respect to their stability), but will also provide a computational account for why performance
is stable: is it due to stability in internal precision, feature weighting, or both? Finally, if num-
ber is privileged in the human mind relative to other ensemble features, we would expect to
find that subjects rely more heavily on the number feature during the number task than they
do on the other features during their respective tasks. Similarly, we would expect that number
would be relatively highly weighted during the surface area and convex hull tasks (compared
to the other nontarget feature).

1. Methods

1.1. Participants

A total of 56 people participated in the study (self-reported gender: 43 females, 13 males).
Participants were undergraduate students who participated for course credit. They ranged in
age from 18 to 25 years old (M = 19.75, SD = 1.39 years). All participants had normal or
corrected-to-normal vision and were not colorblind (determined by self-report; but note that
stimuli differed in luminance and were spatially segregated, and thus colorblindedness was
not a major concern).

1.2. Materials

Stimuli were displayed on a Macintosh iMac computer monitor with a refresh rate of 60 Hz.
The viewing distance was unconstrained but averaged approximately 57 cm and the display
subtended 41.33×26.02° of visual angle.

The stimuli consisted of 216 images depicting blue and yellow dots on a gray background
(see Fig. 1). Blue dots were always presented on the left side of the image and yellow dots
on the right. Images were generated using a custom algorithm in Python, where the number
and total surface area (in pixels) of each dot set, as well as dot placement (which determined
convex hull) could be specified, such that these features could be varied independently of
one another. To vary the convex hull, dots were randomly placed within rectangular areas of
varying sizes, and this allowed us to create smaller convex hulls by requiring the program to
place all the dots within a smaller rectangular area. Dots were placed so that there were at
least 10 pixels between neighboring dots and between each dot and the edge of the image.
The exact value of each feature was then measured precisely after the stimuli were generated:
the total surface area for an ensemble was quantified as the number of pixels of that color
in the image, and the area of the convex hull of each set was precisely computed using the
Convex Hull function in Python’s SciPy package (Jones, Oliphant, & Peterson, 2001). Stimuli
were iteratively generated using these two algorithms until the desired relationship between
features across the entire stimulus set was reached.
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Fig. 1. Example stimuli, which varied in their congruency between number, surface area, and convex hull.
Note. (A) All three features are congruent (yellow is larger than blue for number, surface area, and convex hull).
(B) Number and convex hull are congruent, but surface area is incongruent with them (yellow is larger than blue
for number and convex hull, but blue is larger than yellow for surface area). (C) Both convex hull and surface area
are incongruent with number (yellow is larger than blue for convex hull and surface area, but blue is larger than
yellow for number).

Across the images, there was no difference in number, surface area, or convex hull values
between the blue and yellow dot sets, all ts < 1, all ps > .424. The number of dots varied
between 5 and 22 (M = 12.91, SD = 5.30). Total surface area ranged from 1784 to 19,188 pix
(M = 9702.95, SD = 4800.77). Convex hull values ranged from 12,699 squared units (approx-
imately contained within a box of size 89×164 pixels) to 104,174 squared units (approxi-
mately contained within a box of size 260×462 pixels; M = 50,698.9, SD = 20,098.4). These
values were chosen based on the size of the stimulus images and pilot testing.

Intuitively, the difficulty of a trial is determined by the ratio of the relevant feature between
the blue and yellow dot sets (larger value divided by smaller). In the number task, ratios varied
from the hardest at 1.09 (e.g., 11 vs. 12) to the easiest at 2.86 (e.g., 7 vs. 20; M = 1.87, SD
= .49). In the surface area task, ratios varied from the hardest at 1.09 (e.g., 4128 vs. 4485
pixels) to the easiest at 2.99 (e.g., 2801 vs. 8365 pixels; M = 2.03, SD = .54). In the convex
hull task, ratios varied from the hardest at 1.01 (e.g., 57,981 vs. 58,540 units2) to the easiest
at 4.50 (e.g., 15,664 vs. 70,473.5 units2; M = 1.88, SD = .66). In each task, yellow and blue
were each the correct response to exactly half of the trials.

One of the main motivations for this research was to evaluate the extent to which a given
feature influences performance even when that feature has no predictive power for the correct
response. That is, are subjects obligated to use information from nontarget features, even
when that information cannot improve their performance? In essence, we are interested in
the “baseline” amount that nontarget features are used during a given task, which would
occur when those features are completely not predictive of the correct response with the
target feature. To test this, it was essential that our features be completely orthogonalized
across the stimulus set and fully balanced for congruency. (Note, however, that the features
being orthogonalized in the stimulus set certainly does not ensure that they are represented
orthogonally in the mind, or that they are even being represented at all, as evidenced by the
arguments surrounding additive vs. total area; see Yousif & Keil, 2019).

Therefore, we developed a novel method to orthogonalize competing features in the stim-
ulus set. On a given trial, the “larger” group (yellow or blue) with respect to one feature,
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for example, convex hull, should have a 50% chance of also being the “larger” group for the
other feature, number (i.e., there should be a 50% chance that number and convex hull are
congruent), such that one could not “use” convex hull to respond correctly on the number
task over the course of the experiment. To ensure this lack of predictive power, we generated
our stimuli such that there were equal numbers of congruent and incongruent trials for each
of the nontarget features: there were 108 stimuli where, for example, number and convex hull
were congruent, and 108 stimuli where number and convex hull were incongruent. The same
was true for number and surface area, as well as surface area and convex hull.

Additionally, we sought to make the difficulty of a given stimulus image with respect to one
feature unrelated to the difficulty of that same stimulus image with respect to another feature.
That is, there should be trials where the number comparison is easy and the convex hull
comparison is hard, and vice versa, as well as trials where both are easy, and trials where both
are hard; and these should all be equally distributed across congruent and incongruent trials.
To evaluate whether this had been accomplished, we performed a correlation analysis to assess
the relationships between feature ratios. We used transformed ratios, where we calculated
each stimulus’s ratio for each dimension by dividing the larger (yellow or blue) by the smaller
for that dimension, then we subtracted one from each ratio (so that the point of equality
between yellow and blue would be at a ratio of zero instead of one). If blue was larger than
yellow, we then multiplied the ratio by −1, as this would allow us to account for both the
magnitude of the ratio and the direction of correct response. With these transformed ratios, we
were then able to examine the correlations between the different feature ratios. This analysis
allowed us to conclude that the ratios of each feature were orthogonal with respect to the
ratios of the other two features: Number and Surface Area (R2 = .001), Number and Convex
Hull (R2 = .020), Surface Area and Convex Hull (R2 = .029).

An additional benefit of our orthogonalization procedure is that it allows us to easily dis-
ambiguate the influence of each target feature. Since there is nearly no collinearity between,
for example, the number and convex hull ratios, it is computationally possible to conclusively
assess the effect of convex hull on number responding. This would not be possible if number
and convex hull were at all correlated, as this would result in ambiguity about which feature
was truly responsible for capturing the variance in responding. For example, this is the case
in, for example, DeWind et al. (2015)’s stimulus space, where number and convex hull are
partially correlated with one another.

1.3. Procedure

Participants were tested individually in a quiet room by a trained experimenter. All partici-
pants saw the same set of 216 images three times, each time in a separate block, to compare
the relative magnitudes of the blue and yellow dots with respect to each of the three features:
number, surface area, and convex hull. The order in which the three tasks were presented
was randomized across participants. Within a given task, all participants saw the images in
the same order, and this order was created to ensure that one response (“Yellow” or “Blue”)
would not be the correct answer for more than three trials in a row. The group saw the images
in a different, unique, order for each task.
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Prior to each block, participants were shown an instruction screen that explained the task
and gave examples to illustrate the relevant feature for that block. This was especially impor-
tant prior to the convex hull task, where three example stimuli with white dashed lines drawn
around the hull of the sets were shown to demonstrate the concept of convex hull. After the
instruction screen, participants were given seven practice trials with feedback, and the exper-
imenter walked through the first set of instructions and practice trials with the participants to
ensure they understood the task.

Following the practice trials, the participant completed 216 experimental trials, with a
break halfway through (after 108 trials). Each trial started with a white fixation cross pre-
sented at the center of the screen for 280 ms. The stimulus was then presented for 250
ms, followed by a yellow and blue pixelated mask. The mask remained on the screen until
a response was recorded. After the participants responded, they saw a blank screen for
800 ms before the next trial started. Participants were not given feedback on their perfor-
mance during the experimental trials, and their response, as well as response time, were
recorded.

1.3.1. Retesting
Of our 56 participants, 40 returned to participate in the study a second time, approximately

3 months later. The experimental setup and design were identical between the two instances,
and the order in which they completed the three tasks was randomized independently each
time.

2. Computational model

Previous ANS research has extensively modeled the relationship between performance and
internal precision (e.g., Halberda & Feigenson, 2008; Libertus et al., 2013; Odic et al., 2013;
Piazza et al., 2004, 2010). In particular, a widely used function assumes that a subject’s Weber
Fraction, w, can be estimated based on the following function relating performance (p) and
the ratio of the stimuli being compared (r), as well as a lapse parameter (g):

f1 (w, g, r) = p (correct ) = (1 − g) ∗ 1

2

[
1 + erf

(
r − 1

w
√

2
√

1 + r2

)]
+ g

2

Notice that this model assumes that the only information the subject retrieves from the
stimulus is the ratio of the compared groups on the dimension on which they are being com-
pared. We were interested in quantifying the extent to which nontarget feature information
could influence performance, which was not previously accounted for in typical models (e.g.,
Halberda et al., 2008). An important element that we wanted to include in our model was
that, if a nontarget feature such as convex hull were to influence responses on the number
task, the amount of influence it exerted would be dependent on how precise that subject’s
representations of both the target and nontarget features are.

An example of the implications of this distinction is as follows. High reliance on a highly
precise nontarget feature representation would result in consistently incorrect responses on
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trials where the correct response for the target and nontarget feature are incongruent, and
consistently correct responses on trials where they are congruent. In contrast, high reliance on
a highly imprecise nontarget feature representation would lead to closer to chance responding
across all trials, with much less of a difference in performance based on congruency. With-
out separating precision and reliance, the latter situation would instead be attributed to less
reliance on the nontarget feature than the first case, even if the representations were being
relied upon equally in the two cases.

This distinction contrasts with previous models attempting to quantify the contribution of
non-numerical features during a number task, such as DeWind et al. (2015). In DeWind et al.’s
model, which regresses choice responses over orthogonal dimensions Number, Size (related
to area), and Spacing (related to convex hull), the amount that a subject relied on the number
dimension during a number task is quantified by the value of the regressor βN. Notably, how-
ever, precision was derived from the same regressor (wN = 1√

2βN
). Therefore, this model is

unable to separately quantify precision and amount of use (i.e., it cannot distinguish between
a highly precise representation that is given a low weight, versus an imprecise representation
that is given a high weight). We propose a new modeling approach to disentangle these two
constructs and evaluate their separability.

In our model, the probability that a subject responds correctly on a given trial is a function
of the precision of their representation for each dimension, as well as the amount that they
rely on that particular dimension. For simplicity, we assume that the subject only represents
and is influenced by three features of the stimuli (number, convex hull, and surface area), in
particular the ratios between the two ensembles depicted on a given trial (rN, rCH, and rSA).
We also assume they have a separate value of internal precision for each feature (wN, wCH,
and wSA, respectively). Note, however, that this model can be expanded to include any feature
of interest from the stimulus; these three were chosen because they can be independently
orthogonalized, and because of their prevalence in the number perception literature.

During a trial of the number task, we assume that the subject intends to respond solely on
the basis of number, yet they cannot help but extract and represent the ratio of convex hull
and surface area between the two groups as well, subject to their precision for those features.
Therefore, when they make their response, their probability of responding correctly is not
only a function of wN and rN, but also wCH and rCH, as well as wSA and rSA. We assume that
one’s representational precision for a given feature (e.g., wN) is constant no matter what task is
being performed. Finally, we assume that the amount that they are influenced by each feature
(denoted here by b) varies, with the constraint that bN + bCH + bSA = 1. This parameter
indicates the relative weight given to that feature during the task.

Finally, to account for the fact that on congruent trials, information from a nontarget fea-
ture should increase the likelihood of responding correctly, whereas on incongruent trials, it
should decrease the likelihood of responding correctly, we include a binary variable, a, for
each feature (aN, aCH, aSA), which indicates whether that feature is congruent (a = 1) or not
(a = 0) with the target feature. On the number task, aN always equals 1, while aCH and aSA

equal 1 and 0 on exactly half of the trials each in our stimuli. As a result, when the non-
target feature is incongruent with the target feature, the probability of responding correctly
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10 of 25 E. M. Sanford, C. M. Topaz, J. Halberda / Cognitive Science 48 (2024)

derived from the nontarget feature is subtracted from one, decreasing the overall likelihood
of a correct response.

Then, the probability that the subject would correctly assess which group is larger on that
trial is calculated according to the following functions, where bs, ws, and g (bolded) are fitted
parameters:

fN = aN ∗ [bN ∗ f1 (wN, g, rN ) ]+ (1 − aN ) ∗[ 1 − (bN ∗ f1 (wN, g, rN )
]

fSA = aSA ∗ [bSA ∗ f1 (wSA, g, rSA) ]+ (1 − aSA) ∗[ 1 − (bSA ∗ f1 (wSA, g, rSA)
]

fCH = aCH ∗ [bCH ∗ f1 (wCH, g, rCH ) ]+ (1 − aCH ) ∗[ 1 − bCH ∗ f1 (wCH, g, rCH )]

The resulting values are then added together to get a final sum predicting percent correct
on that trial:

ptotal = fN + fSA + fCH

Note that, because we hypothesized that subjects use different features to different degrees
during the different tasks, we create three separate parameters for each of bN, bCH, and bSA

(i.e., number task bN = / = surface area bN). If the weight with which subjects use each feature
does not vary between tasks, our model would assign a similar value for each b for each task.
As a result, this model fits 13 parameters for each subject.

A perfect observer would only use number information during the number task, convex
hull information during the convex hull task, and area information during the area task—
completely ignoring the nontarget features (e.g., in the number task, bN = 1, bCH = 0, and
bSA = 0). On the other hand, an observer who uses a feature-neutral or generalized magnitude
strategy might equally rely on all three features (i.e., bN = 0.33, bCH = 0.33, and bSA = 0.33).

Now that we have our model delineated, we can use it to concretely illustrate the problem
that is created when precision and feature weighting are conflated. Consider Fig. 2, which
illustrates the relationship between weight, precision, and percent correct (denoted by color)
for a single trial of the number task. On this toy trial, the number ratio is 1.57 and the convex
hull ratio is 1.15, and these two features are incongruent (a = 0); for this trial, it would
be harder to compare convex hull than number if the representational precision of the two
features were equal.

The important point about this plot is that similar probabilities of responding correctly (e.g.,
positions A and B) emerge across large swaths of the graph, despite stark differences in the
underlying parameters. Consequentially, a model that infers only precision from response data
(e.g., DeWind et al., 2015) would assign the same precision to individuals that, in actuality,
greatly differed in their internal precision (due to their underlying differences in weight, b).
When fitting our model, we gain independent purchase on precision and weight by fitting
these independent parameters across a range of stimulus values, across three separate tasks.

Given that internal precision has been found to relate to higher-level mathematical abilities
in models that did not account for feature reliance (e.g., Halberda et al., 2008; Starr, Liber-
tus, & Brannon, 2013; Wang et al., 2017), it is important to investigate which component is
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E. M. Sanford, C. M. Topaz, J. Halberda / Cognitive Science 48 (2024) 11 of 25

Fig. 2. Effect of target feature precision and reliance on expected percent correct for one particular trial of the
number task.
Note. Both parameter combinations A and B yield a 69.1% chance of responding correctly on this number trial,
despite the underlying parameters differing greatly (A: wN = .09, bN = .69; B: wN = .50, bN = .95).

actually responsible for the relationship. Differentiating between these two constructs will
allow us to better understand the cognitive consequences of internal precision.

2.1. Model validation

To empirically ensure that the model can accurately recover parameters in data, we ran a
series of simulations (see Supplementary Materials A for details).

3. Results

3.1. Data cleaning

For each task for each participant, we removed Response Time (RT) outliers that were
at least 3 standard deviations away from their mean RT for that task (1.7% of trials; for an
analysis on the effect of nontask features on RT, see Supplementary Materials B). Then, we
calculated each subject’s accuracy on each task at each time point, and excluded participants
whose accuracy was greater than 3 standard deviations below the mean accuracy across all
subjects for that task. This resulted in the removal of four subjects (one from the convex hull
task at T1, one from the convex hull task at T2, and two from the surface area task at T2).
After exclusions, there were 52 subjects with data at T1, and 40 of those subjects also had
data at T2. Therefore, all results based on comparisons between time points only include those
40 subjects.

3.2. Overall performance: Best on convex hull and varying congruency effects

In terms of overall accuracy, subjects performed best on the convex hull task (M = 90.7%,
SD = .05%), next best on the surface area task (M = 88.3%, SD = .04%), and worst on the
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12 of 25 E. M. Sanford, C. M. Topaz, J. Halberda / Cognitive Science 48 (2024)

number task (M = 84.2%, SD = .05%). A repeated measures one-way ANOVA confirmed that
accuracy differed by task, F(1.69,66) = 28.61, p < .001, and follow-up t-tests with Bonferroni
corrections confirmed that all three tasks differed from one another (ps < .001). Superior
performance on surface area discrimination compared to number discrimination is consistent
with prior work (Odic et al., 2013).

Next, we investigated whether performance on one task predicted performance on the other
tasks. Correlation tests using Bonferroni corrections for multiple comparisons revealed that
subjects who performed more accurately on the number task also performed more accurately
on the surface area task, r(90) = .333, p = .001. A similar relationship was found between
surface area and convex hull performance, r(90) = .370, p < .001. However, there was no
relationship in accuracy between the number and convex hull tasks, r(90) = −.028, p = .791.
Thus, we found weak evidence for shared ability between the different tasks.

As expected, subjects tended to perform better on trials where nontarget features were
congruent with the target feature. This was confirmed with repeated measures t-tests with
Bonferroni corrections. On the number task, average performance was higher on trials where
surface area was congruent with number (M = 85.1%, SD = .05%) than on incongruent trials
(M = 82.5%, SD = .06%), t(51) = 3.62, p = .004, and this was even more dramatically
evident for convex hull congruency (congruent: M = 95.4%, SD = .03%; incongruent: M
= 71.6%, SD = .10), t(51) = 15.89, p < .001. On the surface area task, again, convex
hull congruency significantly impacted performance (congruent: M = 92.8%, SD = .05%;
incongruent: M = 82.3%, SD = .07%), t(51) = 9.66, p < .001. Interestingly, on the surface
area task, subjects were slightly better on trials where number was incongruent (M = 88.9%,
SD = .08%) than congruent (M = 86.5%, SD = .05%), although this difference was not
significant, t(51) = 1.89, p = .39. On the convex hull task, subjects performed better on trials
where number was congruent (M = 93.7%, SD = .04%) than incongruent (M = 85.6%, SD
= .07%), t(51) = 8.88, p < .001, and the same was true for surface area (congruent: M =
91.8%, SD = .04%; incongruent: M = 87.5%, SD = .06%), t(51) = 5.77, p < .001.

In some cases, these congruency effects are extremely strong (e.g., a 23.8% difference in
number performance between convex hull congruent and incongruent trials). Nonetheless,
subjects remained above chance even on incongruent trials, indicating that they were still
more likely to give the target response than a nontarget response. This means that subjects
provided different responses to the very same image when asked to compare on the basis of
different (conflicting) features. We confirmed this with a series of logistic regressions pre-
dicting responses on incongruent trials of one task from responses to the same image during
the alternate task. We found significant negative relationships in all three task combinations:
when predicting number responses from surface area responses (B = −.88, p < .001, odds
ratio = 12.7%); when predicting number responses from convex hull responses (B = −2.06,
p < .001, odds ratio = 41.4%), and when predicting surface area responses from convex hull
responses (B = −.53, p < .001, odds ratio = 58.9%). Subjects were more likely to respond
differently on two tasks if the features were incongruent with one another. Although they
performed worse overall on incongruent trials than on congruent trials, subjects nonetheless
seem to be primarily responding on the basis of the target feature, even when it is incongruent
with the other features.
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E. M. Sanford, C. M. Topaz, J. Halberda / Cognitive Science 48 (2024) 13 of 25

Fig. 3. Modeled Weber Fractions for each feature.
Note. Lower Weber Fractions correspond to better acuity.

3.3. Modeling results

For our first series of analyses, we fit our model using Maximum Likelihood Estimation
(MLE) to each subject’s total dataset (i.e., collapsed across time if the subject had data from
both T1 and T2).

3.3.1. Number is more precise than surface area, less than convex hull
First, we asked whether acuity (w) was similar for the three features. We found significant

differences in modeled precision across the three tasks using a one-way ANOVA, F(2,152) =
31.92, p < .001 (see Fig. 3). With follow-up t-tests using Bonferroni corrections, we found
that subjects were significantly more precise on the convex hull task, as indicated by lower
values of wCH (M = .165, SD = .056), than wN (M = .194, SD = .042), p = .017, which was
in turn significantly more precise than wSA (M = .244, SD = .054), p < .001. This result was
consistent with convex hull being the most accurate of the three tasks. Interestingly, although
subjects were on average more accurate on the surface area task than the number task, we
found that their modeled precision patterned in the opposite direction.

Next, we asked whether precision patterned together across the three tasks. That is, does the
precision of a person’s numerical representations predict the precision of their surface area
or convex hull representations? Correlation tests with Bonferroni corrections for multiple
comparisons revealed that while wN correlated with wSA, r(50) = .425, p = .002, and wCH

patterned with wSA, r(50) = .405, p = .003, there was no relationship between wCH and wN,
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14 of 25 E. M. Sanford, C. M. Topaz, J. Halberda / Cognitive Science 48 (2024)

Fig. 4. Average weights assigned to each feature during each task.

r(50) = .098, p = .488. This mixed result provides inconclusive evidence with respect to
a potential linkage in precision across different magnitudes. Given that we have no a priori
reason to expect that number and convex hull representations should be less closely linked
than other combinations of our features, future work could investigate whether this result is
consistent in other samples and, if so, why.

3.3.2. Subjects rely on different features for different tasks
We then turned to investigate the weight (b) distributions across each task. First, we asked

whether subjects used the same combination of weights regardless of task—that is, was bN

during the number task similar to bN during the surface area task? A two-way ANOVA pre-
dicting weight from feature and task revealed that subjects used very different distributions
of weights during each task. Most importantly for our question, there was a strong interaction
between feature and task, F(4,458) = 2368.96, p < .001 (see Fig. 4).

This interaction effect indicates that, for example, the amount that subjects used their num-
ber representation depended on whether they were performing the number task or not. Sub-
jects in fact weighted the target feature most strongly for each of the three tasks (number
task bN: M = .773, SD = .127; surface area task bSA: M = .897, SD = .100; convex hull
task bCH: M = .920; SD = .061). On both the number and surface area tasks, the second
most highly weighted feature was convex hull (number task bCH: M = .213, SD = .129; sur-
face area task bCH: M = .080, SD = .087). On the convex hull task, number was the second
most highly weighted feature (convex hull task bN: M = .056, SD = .057). Interestingly,
this means that surface area was the least weighted nontarget feature on both the number
and the convex hull tasks (number task bSA: M = .014, SD = .024; convex hull task bSA:
M = .024, SD = .040), indicating that surface area was not strongly influencing responses
during the other tasks. One possible reason for this is that our subjects may be actually rep-
resenting additive area rather than total surface area, such that our model fails to capture
weight placed on the similar, but nonidentical, area metric (Yousif & Keil, 2019). Notably,
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E. M. Sanford, C. M. Topaz, J. Halberda / Cognitive Science 48 (2024) 15 of 25

the weight on number during the number task was significantly lower than either the weight
for surface area during the surface area task or the weight for convex hull during the con-
vex hull task, ps < .001, while the latter two did not differ from one another, p = .16. This
indicates that subjects had a relatively harder time focusing on number during the number
task than on the other two features during their respective tasks. This result is inconsistent
with the claim that number has a privileged position as a represented dimension in the human
mind.

Next, we asked whether the ability to focus on the target feature was a domain-general
ability. That is, are subjects who are the best at focusing on number (high bN) during the
number task also the best at focusing on convex hull (high bCH) during the convex hull task,
perhaps because they have better general inhibitory control than other participants? In fact, we
found the opposite: a correlation between number-task bN and convex hull-task bCH yielded
a negative relationship, r(50) = −.354, p = .010. There was a positive relationship between
number-task bN and surface area-task bSA, r(50) = .370, p = .007, and no relationship between
surface area-task bSA and convex hull-task bCH, r(50) = .153, p = .280. These inconclusive
results indicate, at a minimum, that the ability to home in on the target feature is not best
thought of as a domain-general inhibitory ability, and may instead be consistent with prior
work suggesting the existence of number-specific inhibitory control (e.g., Piazza, De Feo,
Panzeri, & Dehaene, 2018; Wilkey & Price, 2019).

A possible explanation for this last pattern of results would be that subjects have a more
rigid weight distribution across the three tasks. For example, it is possible that a subject who
relies highly on convex hull during the convex hull task (high bCH) would have a harder time
suppressing convex hull during the number task (again, high bCH), and as a result, would have
a correspondingly lower weight on number during the number task (low bN). Therefore, we
evaluated whether there was a relationship between target feature weight, and weight for that
feature on the other tasks (i.e., number-task bCH vs. convex hull-task bCH). This hypothesis
was somewhat substantiated by the positive relationship between convex hull-task bCH and
number-task bCH, r(50) = .403, p = .003, which indicates that subjects who used convex
hull relatively more during the convex hull task also tended to use it relatively more during
the number task. Likewise, we found that there was a positive relationship between number-
task bN and convex hull-task bN, r(50) = .348, p = .012, indicating that subjects who used
number more during the number task also used number more during the convex hull task.
In contrast, there was no relationship between convex hull-task bCH and surface area-task
bCH, r(50) = .086, p = .542, nor between number-task bN and surface area-task bN, r(50) =
.135, p = .341. Similarly, there was no relationship between the surface area-task bSA and
either the number-task bSA, r(50) = .025, p = .863, or convex hull-task bSA, r(50) = −.032,
p = .820.

This provides some support for the idea that subjects who use a feature more during its
target task also use it relatively more—or have a harder time suppressing it—when that feature
is not the target. However, this only appears to be the case for features that are playing a
relatively larger role in their estimates, as this pattern was not seen with surface area, which
was the least used nontarget feature.
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16 of 25 E. M. Sanford, C. M. Topaz, J. Halberda / Cognitive Science 48 (2024)

3.3.3. Subjects do not rely the most on the most precise representations
As previously stated, the main motivation for this research was to tease apart the constructs

of precision and reliance. If they are actually related with one another, we would see a negative
correlation between weight and reliance (where subjects with better precision are using the
feature relatively more). This could even be conceived as an optimal way to combine infor-
mation with the highest fidelity: if subjects are sensitive to their own precision, they should
more highly weight their more precise representations and rely less upon their less precise
representations, since they can be less sure that those contain accurate information about the
world. To the extent that feature weights are tuned to longer-term priors (e.g., “When I esti-
mate number in the world, I find it helpful to weight convex hull somewhat highly”), then we
should observe some of this up-weighting across tasks.

Some preliminary evidence against this conclusion can be gleaned from the previous anal-
yses. For instance, on average, subjects have more precise number than surface area repre-
sentations (wN < wTSA), yet are on average weighting surface area on the surface area task
relatively more than they are weighting number on the number task (number-task bN < sur-
face area-task bTSA). This is not optimal, since they should be using number more relative
to surface area if their number representations are more precise. Given our orthogonaliza-
tion of feature dimensions, relying on surface area in the number task cannot aid accurate
decisions.

Additionally, we directly investigated whether subjects with a more precise representation
(lower w) were using that feature more within that task (higher b) relative to other subjects
(i.e., w and b should be negatively correlated across subjects). We found that this was not the
case for any feature (number: r(50) = .227, p = .106, BF10 = 1.022; surface area: r(50) =
−.078, p = .584, BF10 = .358; convex hull: r(50) = .025, p = .862, BF10 = .317). We found
no evidence that subjects who had more precise representations weighted those representa-
tions more highly on the target task relative to other subjects. In fact, two of the trends were
in the opposite direction, where subjects with worse precision were using that feature slightly
more. Resultingly, feature precision and reliance appear to be separable constructs that do not
pattern together during magnitude comparison tasks.

3.4. Comparing results across time

Using the data from the 40 subjects who returned to complete the study again after 3
months, we were able to investigate whether performance in each task is stable across time,
and to compare within- and across-task stability.

First, we investigated whether accuracy (% correct) on a given task at T1 predicted accuracy
on the same task at T2, consistent with prior research. We found that it did, robustly, for all
three tasks (Number: r(38) = .690, p < .001; Surface Area: r(38) = .649, p < .001; Convex
Hull: r(38) = .535, p < .001).

Split by time, we found less robust evidence of related performance across tasks. Com-
paring all three tasks within each time point, we found that there were significant positive
relationships only between accuracy on the convex hull and surface area tasks at T1, r(38) =
.580, p < .001, and between the number and surface area tasks at T2, r(38) = .476, p = .002.
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Fig. 5. Stability in precision over time.

No other comparisons were significant, ps > .163. Overall, accuracy does not appear to be
strongly related across the three tasks.

3.5. Modeling results across time

We once again fit our model to each subject’s data, this time separately for T1 and T2.

3.5.1. T1 and T2 yielded very similar modeling results
First, we asked whether results from the time-collapsed models (e.g., differences in preci-

sion on the three features) were driven differentially by performance at either time point. A
two-way (feature × time) repeated measures ANOVA revealed that there was again a signif-
icant difference in precision between the three features, F(2,233) = 48.94, p < .001. Once
again, wCH (M = .149, SD = .051) was more precise than wN (M = .191, SD = .048), p <

.001, which was in turn more precise than wSA (M = .234, SD = .062), p < .001. There was no
effect of time on precision, F(1,233) = .018, p = .894. There was also a marginal interaction
between task and time, F(2,233) = 1.64, p = .196. Overall, performance was similar on a
given task between the two time points.

3.5.2. Number precision is stable over time
Previous research has attributed temporal stability in number performance to stability in

one’s representational precision (Clayton et al., 2015; DeWind & Brannon, 2016; Elliott
et al., 2019; Libertus & Brannon, 2010; Price et al., 2012; Purpura & Simms, 2018). How-
ever, these previous models have not included the feature weighting component, which is
another possible locus of stability in performance. Therefore, we investigated whether acu-
ity (w) at T1 predicted acuity at T2 for any of our three features. Consistent with previous
research, we found a significant relationship between number precision at T1 and T2, r(38) =
.394, p = .012. In contrast, neither surface area nor convex hull showed significant stability
in precision (Surface Area: r(38) = .186, p = .252; Convex Hull: r(38) = .008, p = .959;
see Fig. 5).
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Fig. 6. Stability in weights over time.

3.5.3. Feature weighting is highly stable over time
The result that neither surface area nor convex hull precision were stable across time was

surprising considering that we found a strong relationship between accuracy on each task
between T1 and T2. Therefore, we turned to investigate whether feature weightings were
stable across time for each task (e.g., does surface area-task bSA at T1 predict surface area-task
bSA at T2?). Interestingly, we found strong evidence of target feature weight stability for all
three tasks (Number: r(38) = .804, p < .001; Surface Area: r(38) = .578, p < .001; Convex
Hull: r(38) = .493, p = .001; see Fig. 6). This indicates that the ability to correctly focus
on for example, number during the number task, while distinct from the ability to focus on
convex hull during the convex hull task, is stable across time. This appears to be an additional
source of stability in feature-specific magnitude comparison performance (and perhaps even
the main source of stability for the surface area and convex hull tasks).

However, it is worth noting again that in our model validation (see Supplementary Materi-
als A, Stability in w, b), when both precision and weight were correlated between T1 and T2,
the simulation recovered a high correlation between weight at T1 and T2, but a much lower
correlation between precision at T1 and T2. This may somewhat explain the lack of corre-
lations we found in surface area and convex hull precision. Our results strongly suggest that
feature reliance is a stable individual difference, while the results on the stability of internal
precision are less clear. Further research is necessary before one can draw a firm conclusion
about the stability of these different components of performance.

4. Discussion

In this study, we asked to what extent people combine the same information in different
amounts depending on the task at hand. When investigating feature reliance as defined in
our model, we found that the ability to focus on one feature does not predict the ability to
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focus on another feature. This indicates that the ability to focus on a particular dimension
is not best conceived of as a domain general “inhibitory control” ability. In fact, our data
trended in the opposite direction, such that high reliance on convex hull during the convex
hull task predicted higher reliance on convex hull during the number task as well. These
results are more consistent with a proposed number-specific inhibitory control ability (e.g.,
Piazza et al., 2018; Wilkey & Price, 2019). Our results are also consistent with prior studies
that found convex hull mattered more than total area during number comparison (e.g., Clayton
& Gilmore, 2015; Gilmore et al., 2016).

We also investigated the relationship between internal precision and reliance on target and
nontarget features, as they had been previously conflated in approximate number models
(e.g., DeWind et al., 2015). We found that these two parameters were uncorrelated in all
three tasks, which indicates that a person’s internal precision and their ability to focus on a
particular feature (and suppress other features) should be conceived of as separate contrib-
utors to overall magnitude comparison performance. Particularly because these dimensions
are separable, future investigations of the influence of continuous features on number per-
formance should take into account the representational precision of the other features, which
will give a more accurate estimate of how much that feature is actually influencing number
responses.

Interestingly, our results conflict with past research that has suggested that number has a
privileged role in the human mind (e.g., Cicchini et al., 2016; Ferrigno et al., 2017; Tomlinson
et al., 2020). In our results, number was not consistently the most-used nontarget feature on
other comparisons, and it was the least strongly relied-upon feature on its own task (compared
to the weight on surface area during the surface area task, or the weight on convex hull during
the convex hull task). Instead, consistent with recent work indicating that number may not
have a privileged role once feature perceptibility is taken into account (Aulet & Lourenco,
2023), these results suggest that number is not more easily focused on when other features
conflict with it.

One of the novel contributions of this work is that we investigated the source of stability in
ANS performance (e.g., Clayton et al., 2015; DeWind & Brannon, 2016; Elliott et al., 2019;
Price et al., 2012; Purpura & Simms, 2018). Here, we have taken the previously stable w
measure and essentially partitioned it into two separate parameters. We found a significant
relationship between T1 and T2 for wN, consistent with previous research. In contrast, there
was no evidence of stability in wSA or wCH between T1 and T2. We additionally found robust
evidence of stability in feature weighting between T1 and T2, for every task. With the caveat
that our model might be biased toward this conclusion (i.e., weight is stable and precision is
not; see Supplementary Materials), it appears to be the case that, at least, the ability to focus
on a target feature for a given task is stable over time, even while that ability is not stable
within a subject across tasks.

Further research is necessary to more conclusively determine which of these components
are stable across time, and why the ability to focus on one feature does not predict the ability
to focus on another. Another question of interest is how domain-general inhibitory control
abilities relate to the feature weightings we found in our current study. Although our three
target-feature weights did not correlate with one another, there remains a possibility that some
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(or all) of these abilities relate at least partially with other measures of inhibitory control (such
as number-specific inhibitory control; Piazza et al., 2018; Wilkey & Price, 2019). Finally,
another question is how these separable components of magnitude comparison develop. The
ANS improves across development, peaking in performance around age 30 (Halberda, Ly,
Wilmer, Naiman, & Germine, 2012). Do developmental improvements in internal precision
and target feature weighting equally contribute to this general improvement in performance?
What are the trajectories of development for each of these components of performance? Some
previous work suggests that the development of the ability to focus on number could be the
key reason that ANS performance improves with age (e.g., Piazza et al., 2018); our modeling
framework would allow for an explicit test of this hypothesis.

Parsing the previously singular parameter w into two separate, independent parameters
opens important questions for the field of numerical cognition. Particularly, it will be impor-
tant to investigate the relationship between ANS performance and formal mathematics, where
internal precision has been shown to predict mathematics performance (Halberda et al., 2008;
Mazzocco et al., 2011). One possibility is that feature weighting (i.e., the ability to focus
on number during the number task) may play a part in the relationship found in previous
research.

Another valuable direction for future inquiry is to evaluate the developmental trajectories
of precision and reliance. It has previously been shown that ANS precision improves between
birth and age 30 (Halberda et al., 2012), but it is unknown to what extent that maturation
is due to changes in internal precision versus changes in the ability to focus on the correct
feature. Similarly, it may be valuable to quantify which abilities are more strongly affected
in populations with ANS-specific deficits, such as dyscalculia and Williams’ Syndrome
(Butterworth, 2010; Castaldi, Turi, Gassama, Piazza, & Eger, 2020; Cheng et al., 2020;
Dowker & Kaufmann, 2009; Libertus, Feigenson, Halberda, & Landau, 2014; O’Hearn &
Luna, 2009; Piazza et al., 2010; Wilson, Revkin, Cohen, Cohen, & Dehaene, 2006), as it
could help inform the best approaches for future numerical interventions.

Finally, although we only looked at three features here (number, surface area, and convex
hull), the same modeling approach could be used for any combination of features, such as
density, perimeter, or average area. Indeed, it could be applied to any magnitude comparison
experiment with multiple competing dimensions. Using this delineated approach will allow
us to better understand to what extent these other features influence perception and decision-
making.

The picture of magnitude perception and judgment that emerges from this work is that
each magnitude has its own precision in perception—there is not just one magnitude system;
that each magnitude has its own weighting parameter; and these parameters are intelligently
modulated for each task, and are stable across time in individuals.
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